6 research outputs found

    Identification and analysis of deletion breakpoints in four Mohr-Tranebjærg syndrome (MTS) patients

    Get PDF
    Mohr-Tranebjærg syndrome is an X-linked syndrome characterized by sensorineural hearing impairment in childhood, followed by progressive neurodegeneration leading to a broad phenotypic spectrum. Genetically MTS is caused by pathogenic variants in the TIMM8A gene, including gene deletions and larger contiguous gene deletions. Some of the latter involve the neighboring gene BTK, resulting in agammaglobulinemia. By next-generation mate-pair sequencing we have mapped the chromosomal deletion breakpoints of one MTS case and three XLA-MTS cases and used breakpoint-spanning PCR to fine map the breakpoints by Sanger sequencing. Two of the XLA-MTS cases presented with large deletions (63.5 and 27.2 kb), and the junctional regions were characterized by long stretches of microhomology, indicating that the events have emerged through homologous recombination. Conversely, the MTS case exhibited a small 2 bp region of microhomology, and the regions were not characterized by extensive microhomology. The third XLA-MTS case had a more complex breakpoint, including a 59 bp inverted insertion, thus at least four breakpoints were involved in this event. In conclusion, mate-pair library generation combined with next-generation sequencing is an efficient method for breakpoint identification, also in regions characterized by repetitive elements

    Assessment of gene–disease associations and recommendations for genetic testing for somatic variants in vascular anomalies by VASCERN-VASCA

    No full text
    International audienceAbstract Background Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. Results Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene–disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene–phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. Conclusions This work provides a detailed evidence-based view of the gene–disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene–phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ )

    National clinical Genetic Networks - GENets - Establishment of expert collaborations in Denmark

    No full text
    Genetic conditions are often familial, but not all relatives receive counseling from the same institution. It is therefore necessary to ensure consistency in variant interpretation, counseling practices, and clinical follow up across health care providers. Furthermore, as new possibilities for gene-specific treatments emerge and whole genome sequencing becomes more widely available, efficient data handling and knowledge sharing between clinical laboratory geneticists and medical specialists in clinical genetics are increasingly important. In Denmark, these needs have been addressed through the establishment of collaborative national networks called Genetic Expert Networks or "GENets". These networks have enhanced patient and family care significantly by bringing together groups of experts in national collaborations. This promotes coordinated clinical care, the dissemination of best clinical practices, and facilitates the exchange of new knowledge.</p

    Am J Med Genet A

    No full text
    TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy
    corecore