105 research outputs found

    A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

    Get PDF
    Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    Impact of vitamin D metabolism on clinical epigenetics

    Get PDF
    The bioactive vitamin D (VD) metabolite, 1,25-dihydroxyvitamin D3 regulates essential pathways of cellular metabolism and differentiation via its nuclear receptor (VDR). Molecular mechanisms which are known to play key roles in aging and cancer are mediated by complex processes involving epigenetic mechanisms contributing to efficiency of VD-activating CYP27A1 and CYP27B1 or inactivating CYP24 enzymes as well as VDR which binds to specific genomic sequences (VD response elements or VDREs). Activity of VDR can be modulated epigenetically by histone acetylation. It co-operates with other nuclear receptors which are influenced by histone acetyl transferases (HATs) as well as several types of histone deacetylases (HDACs). HDAC inhibitors (HDACi) and/or demethylating drugs may contribute to normalization of VD metabolism. Studies link VD signaling through the VDR directly to distinct molecular mechanisms of both HAT activity and the sirtuin class of HDACs (SIRT1) as well as the forkhead transcription factors thus contributing to elucidate complex epigenetic mechanisms for cancer preventive actions of VD

    Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last decade, biochemical studies have revealed that epigenetic modifications including histone modifications, histone variants and DNA methylation form a complex network that regulate the state of chromatin and processes that depend on it including transcription and DNA replication. Currently, a large number of these epigenetic modifications are being mapped in a variety of cell lines at different stages of development using high throughput sequencing by members of the ENCODE consortium, the NIH Roadmap Epigenomics Program and the Human Epigenome Project. An extremely promising and underexplored area of research is the application of machine learning methods, which are designed to construct predictive network models, to these large-scale epigenomic data sets.</p> <p>Results</p> <p>Using a ChIP-Seq data set of 20 histone lysine and arginine methylations and histone variant H2A.Z in human CD4<sup>+ </sup>T-cells, we built predictive models of gene expression as a function of histone modification/variant levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines (MARS). Along with extensive crosstalk among the 20 histone methylations, we found H4R3me2 was the most and second most globally repressive histone methylation among the 20 studied in the ML and MARS models, respectively. In support of our finding, a number of experimental studies show that PRMT5-catalyzed symmetric dimethylation of H4R3 is associated with repression of gene expression. This includes a recent study, which demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation--a known global repressor of gene expression.</p> <p>Conclusion</p> <p>In stark contrast to univariate analysis of the relationship between H4R3me2 and gene expression levels, our study showed that the regulatory role of some modifications like H4R3me2 is masked by confounding variables, but can be elucidated by multivariate/systems-level approaches.</p

    Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification

    Get PDF
    Abstract Background Transcription promoters are fundamental genomic cis-elements controlling gene expression. They can be classified into two types by the degree of imprecision of their transcription start sites: peak promoters, which initiate transcription from a narrow genomic region; and broad promoters, which initiate transcription from a wide-ranging region. Eukaryotic transcription initiation is suggested to be associated with the genomic positions and modifications of nucleosomes. For instance, it has been recently shown that histone with H3K9 acetylation (H3K9ac) is more likely to be distributed around broad promoters rather than peak promoters; it can thus be inferred that there is an association between histone H3K9 and promoter architecture. Results Here, we performed a systematic analysis of transcription promoters and gene expression, as well as of epigenetic histone behaviors, including genomic position, stability within the chromatin, and several modifications. We found that, in humans, broad promoters, but not peak promoters, generally had significant associations with nucleosome positioning and modification. Specifically, around broad promoters histones were highly distributed and aligned in an orderly fashion. This feature was more evident with histones that were methylated or acetylated; moreover, the nucleosome positions around the broad promoters were more stable than those around the peak ones. More strikingly, the overall expression levels of genes associated with broad promoters (but not peak promoters) with modified histones were significantly higher than the levels of genes associated with broad promoters with unmodified histones. Conclusion These results shed light on how epigenetic regulatory networks of histone modifications are associated with promoter architecture

    Computational study of associations between histone modification and protein-DNA binding in yeast genome by integrating diverse information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In parallel with the quick development of high-throughput technologies, <it>in vivo (vitro) </it>experiments for genome-wide identification of protein-DNA interactions have been developed. Nevertheless, a few questions remain in the field, such as how to distinguish true protein-DNA binding (functional binding) from non-specific protein-DNA binding (non-functional binding). Previous researches tackled the problem by integrated analysis of multiple available sources. However, few systematic studies have been carried out to examine the possible relationships between histone modification and protein-DNA binding. Here this issue was investigated by using publicly available histone modification data in yeast.</p> <p>Results</p> <p>Two separate histone modification datasets were studied, at both the open reading frame (ORF) and the promoter region of binding targets for 37 yeast transcription factors. Both results revealed a distinct histone modification pattern between the functional protein-DNA binding sites and non-functional ones for almost half of all TFs tested. Such difference is much stronger at the ORF than at the promoter region. In addition, a protein-histone modification interaction pathway can only be inferred from the functional protein binding targets.</p> <p>Conclusions</p> <p>Overall, the results suggest that histone modification information can be used to distinguish the functional protein-DNA binding from the non-functional, and that the regulation of various proteins is controlled by the modification of different histone lysines such as the protein-specific histone modification levels.</p

    Bivalent-Like Chromatin Markers Are Predictive for Transcription Start Site Distribution in Human

    Get PDF
    Deep sequencing of 5′ capped transcripts has revealed a variety of transcription initiation patterns, from narrow, focused promoters to wide, broad promoters. Attempts have already been made to model empirically classified patterns, but virtually no quantitative models for transcription initiation have been reported. Even though both genetic and epigenetic elements have been associated with such patterns, the organization of regulatory elements is largely unknown. Here, linear regression models were derived from a pool of regulatory elements, including genomic DNA features, nucleosome organization, and histone modifications, to predict the distribution of transcription start sites (TSS). Importantly, models including both active and repressive histone modification markers, e.g. H3K4me3 and H4K20me1, were consistently found to be much more predictive than models with only single-type histone modification markers, indicating the possibility of “bivalent-like” epigenetic control of transcription initiation. The nucleosome positions are proposed to be coded in the active component of such bivalent-like histone modification markers. Finally, we demonstrated that models trained on one cell type could successfully predict TSS distribution in other cell types, suggesting that these models may have a broader application range

    Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Initiation and elongation of RNA polymerase II (RNAPII) transcription is regulated by both DNA sequence and chromatin signals. Recent breakthroughs make it possible to measure the chromatin state and activity of core promoters genome-wide, but dedicated computational strategies are needed to progress from descriptive annotation of data to quantitative, predictive models.</p> <p>Results</p> <p>Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII in the gene body, the mRNA production originating from the promoter and finally also the stalling characteristics of RNAPII by considering both quantitative and spatial features of histone modifications around the transcription start site (TSS).</p> <p>As the model framework can also pinpoint the signals that are the most influential for prediction, it can be used to infer underlying regulatory biology. For example, we show that the H3K4 di- and tri- methylation signals are strongly predictive for promoter location while the acetylation marks H3K9 and H3K27 are highly important in estimating the promoter usage. All of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive of RNAPII stalling.</p> <p>Conclusions</p> <p>In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data.</p

    Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome

    Get PDF
    Additional file 3. This file contains all supplementary tables relating to lncRNA identification via the conservation of synteny. Table S3. lncRNAs inferred in one species by the genomic alignment of a transcript assembled with the RNA-seq libraries from a related spdecies. Table S12. Presence of intergenic lncRNAs both in sheep and cattle, in regions of conserved synteny. Table S13. Presence of intergenic lncRNAs both in sheep and goat, in regions of conserved synteny. Table S14. Presence of intergenic lncRNAs both in cattle and goat, in regions of conserved synteny. Table S15. Presence of intergenic lncRNAs both in sheep and humans, in regions of conserved synteny. Table S16. Presence of intergenic lncRNAs both in goat and humans, in regions of conserved synteny. Table S17. Presence of intergenic lncRNAs both in cattle and humans, in regions of conserved synteny. Table S18. High-confidence lncRNA pairs, those conserved across species both sequentially and positionally
    corecore