45 research outputs found

    Consumption-Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a Global Wildlife Footprint.

    Get PDF
    Although most conservation efforts address the direct, local causes of biodiversity loss, effective long-term conservation will require complementary efforts to reduce the upstream economic pressures, such as demands for food and forest products, which ultimately drive these downstream losses. Here, we present a wildlife footprint analysis that links global losses of wild birds to consumer purchases across 57 economic sectors in 129 regions. The United States, India, China, and Brazil have the largest regional wildlife footprints, while per-person footprints are highest in Mongolia, Australia, Botswana, and the United Arab Emirates. A US$100 purchase of bovine meat or rice products occupies approximately 0.1 km2 of wild bird ranges, displacing 1-2 individual birds, for 1 year. Globally significant importer regions, including Japan, the United Kingdom, Germany, Italy, and France, have large footprints that drive wildlife losses elsewhere in the world and represent important targets for consumption-focused conservation attention

    Hotspots of land use change in Europe

    Get PDF
    Die Zweitveröffentlichung der Publikation wurde durch Studierende des Projektseminars "Open Access Publizieren an der HU" im Sommersemester 2017 betreut. Nachgenutzt gemäß den CC-Bestimmungen des Lizenzgebers bzw. einer im Dokument selbst enthaltenen CC-Lizenz.Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions.Wecompiled and analyzed high-resolution, spatiallyexplicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes.Wefound a clear East–West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990–2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.Peer Reviewe

    Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth

    Get PDF
    Biodiversity and ecosystem service losses driven by land-use change are expected to intensify as a growing and more affluent global population requires more agricultural and forestry products, and teleconnections in the global economy lead to increasing remote environmental responsibility. By combining global biophysical and economic models, we show that, between the years 2000 and 2011, overall population and economic growth resulted in increasing total impacts on bird diversity and carbon sequestration globally, despite a reduction of land-use impacts per unit of gross domestic product (GDP). The exceptions were North America and Western Europe, where there was a reduction of forestry and agriculture impacts on nature accentuated by the 2007-2008 financial crisis. Biodiversity losses occurred predominantly in Central and Southern America, Africa and Asia with international trade an important and growing driver. In 2011, 33% of Central and Southern America and 26% of Africa's biodiversity impacts were driven by consumption in other world regions. Overall, cattle farming is the major driver of biodiversity loss, but oil seed production showed the largest increases in biodiversity impacts. Forestry activities exerted the highest impact on carbon sequestration, and also showed the largest increase in the 2000-2011 period. Our results suggest that to address the biodiversity crisis, governments should take an equitable approach recognizing remote responsibility, and promote a shift of economic development towards activities with low biodiversity impacts

    A research agenda for improving national Ecological Footprint accounts

    Full text link

    International trade and Austria's livestock system: Direct and hidden carbon emission flows associated with production and consumption of products

    No full text
    The Kyoto Protocol created a framework of responsibilities and mechanisms to mitigate climate change by reducing the emissions of greenhouse gases (GHGs) into the atmosphere. The Protocol stipulates accounting and reporting of GHG emissions and removals, such as energy use, industrial processes, agriculture, waste and net emissions resulting from land use, land-use change and forestry (LULUCF) activities. Emissions reported according to the rules set by the Kyoto Protocol do not include GHG emissions outside a country's boundaries resulting from the production of imported goods or services. As a result, GHG accounts constructed according to the Kyoto Protocol reflect the GHG emissions resulting from the production system of a country, but not all the emissions resulting from the consumption of goods and services within the country. However, as previous studies demonstrate, a country's emission balance changes remarkably if emissions related to goods or services imported and exported are taken into account. Here, we go beyond the aforementioned studies which mainly focus on GHG emissions from fossil fuel combustion. We assess, in a first-order approach, upstream emissions that result from LULUC activities outside a country while the produced goods are consumed within the country. In our study we focus on Austria's livestock system to elucidate the difference between production and consumption-related emissions accounting approaches. We study direct and 'hidden' (embodied) GHG emissions associated with Austria's bilateral trade in livestock and livestock-related products, based on the integration of full carbon accounting (FCA) and life cycle analysis (LCA).Hidden carbon emissions Sharing responsibility Kyoto Protocol Deforestation Full carbon accounting Life cycle analysis

    Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European Union

    No full text
    Cascading use of biomass is a recognized strategy contributing to an efficient development of the bioeconomy and for mitigating climate change. This study aims at assessing the potential of cascading use of woody biomass for reducing GHG (greenhouse gas) emissions and increasing the overall wood flow efficiency in the European Union's forest and bioeconomy sectors. A scenario and life cycle approach was followed to quantify the potential benefits of cascading use of woody biomass. We started from a reference scenario in which (post-consumer) waste wood and paper are re-utilized for energy only (S0). Then we compared the reference scenario with two alternative scenarios, the current waste wood and paper recycling practices (S1) and the maximum technical potential to increase recycling of waste wood and paper flows (S2). Following a supply chain perspective, different stages of production were analysed, including forgone fossil-fuels substitution, optimization at manufacturing level and forest regrowth. Through cascading use, the wood use efficiency ratio (cascade factor) in the European wood sector would be increased by 23% (S0 vs S1) and 31% (S0 vs S2) and GHG emissions (cradle-to-gate energy use) would be reduced by 42% (28 MtCO2-eq/year) and 52% (35 MtCO2-eq/year) in scenarios S1 and S2. However, increased wood product cascading is counter effected in the short term by reduced savings in the energy sector by 49% and 48% (−43 and −42 MtCO2-eq/year) in scenarios S1 and S2 due to delayed availability of waste wood and waste paper fibers. This explorative study highlights the potential of cascading use of woody biomass in the wood production chains to contribute to a reduction of environmental impacts related to wood resource and energy use, but it also reveals trade-offs in terms of GHG emissions reduction, relevant especially in meeting short-term (2020–2030) renewable energy targets.JRC.D.1-Bio-econom

    Product level dataset on embodied human appropriation of net primary production

    No full text
    International audienceThis dataset includes data on the embodied human appropriation of net primary production (eHANPP) associated with products derived from agriculture and forestry. The human appropriation of net primary production (HANPP) is an indicator of changes in the yearly availability of biomass energy from photosynthesis that remains available in terrestrial ecosystems after harvest, under current land use, compared to the net primary production of the potential natural vegetation. HANPP is an indicator of land-use intensity that is relevant for biodiversity and biogeochemical cycles. The eHANPP indicator allocates HANPP to products and allows tracing trade flows from origin (the country where production takes place) to consumption (the country where products are consumed), thereby underpinning research into the telecouplings in global land use. The datasets described in this article trace eHANPP associated with the bilateral trade flows between 222 countries. It covers 161 primary crops, 13 primary animal products and 4 primary forestry products, as well as the end uses of these products for the years 1986 to 2013
    corecore