112 research outputs found
Study of the kinetics of antibodies titres against viral pathogens and detection of rotavirus and parainfluenza 3 infections in captive crias of guanacos (Lama guanicoe)
A longitudinal study was conducted to investigate the presence of antibodies (Ab) to Rotavirus (RV), Parainfluenza-3 virus (PI-3), Bovine Herpesvirus-1 (BoHV-1), Bovine Viral Diarrhoea virus (BVDV-1) and Bluetongue virus (BTV) in eleven guanaco's crias (chulengos) relocated from Rio Negro to Buenos Aires Province (Argentina) and reared in captivity for a year in an experimental field. Serum samples were collected periodically to detect the evidence of viral infections. Faecal samples were collected to investigate RV shedding. We detected the evidence of Ab to RV from the beginning of the experience, suggesting the presence of maternal Ab against the virus. RV infection was detected in seven of the eleven chulengos, by seroconversion (4), virus shedding in stools (1) or both (2). In all cases, the RV strain was typed as [P1]G8, the same G/P type combination detected in captive chulengos with acute diarrhoea sampled in Rio Negro, in 2001. In contrast, we could not detect antibodies against PI-3, BoHV-1, BVDV or BT in any of initial samples. No Abs against BoHV-1, BVDV or BTV were detected in the chulengos throughout the study. However, all the chulengos became asymptomatically seropositive to PI-3 by the 7 month after arrival. This study suggest that wild-born guanacos raised in captivity can be relatively susceptible to common livestock viral infections, such as RV and PI-3, which are easily spread among chulengos.Fil: Marcoppido, G.. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; ArgentinaFil: Olivera, Valeria. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de PatobiologÃa; ArgentinaFil: Bok, Karin. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Parreño, Gladys Viviana. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentin
EpidemiologÃa molecular de rotavirus humanos en Argentina
Los rotavirus son el principal agente productor de diarrea infantil aguda en todo el mundo. El virus se transmite por vÃa fecal-oral de persona a persona, enfermando solo a los individuos no inmunes, en general niños en los primeros años de vida. Con episodios sucesivos de este trastorno, la inmunidad contra este virus se incrementa y los sÃntomas se manifiestan de manera más leve. La infección por rotavirus presenta caracterÃsticas estacionales con picos de la enfermedad durante los meses de otoño-invierno, cuando puede llegar a ser responsable del 80% de los episodios de diarrea en niños menores de tres años.Academia Nacional de AgronomÃa y Veterinaria (ANAV
Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea
Group A Rotavirus (RVA) is the leading cause of severe diarrhea in children. The aims of the present study were to determine the neutralizing activity of VP6-specific llama-derived single domain nanoantibodies (VHH nanoAbs) against different RVA strains in vitro and to evaluate the ability of G6P[1] VP6-specific llama-derived single domain nanoantibodies (VHH) to protect against human rotavirus in gnotobiotic (Gn) piglets experimentally inoculated with virulent Wa G1P[8] rotavirus. Supplementation of the daily milk diet with 3B2 VHH clone produced using a baculovirus vector expression system (final ELISA antibody -Ab- titer of 4096; virus neutralization -VN- titer of 256) for 9 days conferred full protection against rotavirus associated diarrhea and significantly reduced virus shedding. The administration of comparable levels of porcine IgG Abs only protected 4 out of 6 of the animals from human RVA diarrhea but significantly reduced virus shedding. In contrast, G6P[1]-VP6 rotavirus-specific IgY Abs purified from eggs of hyperimmunized hens failed to protect piglets against human RVA-induced diarrhea or virus shedding when administering similar quantities of Abs. The oral administration of VHH nanoAb neither interfered with the host's isotype profiles of the Ab secreting cell responses to rotavirus, nor induced detectable host Ab responses to the treatment in serum or intestinal contents. This study shows that the oral administration of rotavirus VP6-VHH nanoAb is a broadly reactive and effective treatment against rotavirus-induced diarrhea in neonatal pigs. Our findings highlight the potential value of a broad neutralizing VP6-specific VHH nanoAb as a treatment that can complement or be used as an alternative to the current strain-specific RVA vaccines. Nanobodies could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea.Fil: Vega, Celina Guadalupe. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Bok, Marina. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Vlasova, Anastasia N.. Ohio State University; Estados UnidosFil: Chattha, Kuldeep S.. Ohio State University; Estados UnidosFil: Gómez Sebastián, Silvia. Universidad Politécnica de Madrid; EspañaFil: Nuñez, Carmen. Universidad Politécnica de Madrid; EspañaFil: Alvarado, Carmen. Universidad Politécnica de Madrid; EspañaFil: Lasa, Rodrigo. Universidad Politécnica de Madrid; EspañaFil: Escribano, José M.. Instituto Nacional de Investigación y TecnologÃa Agraria y Alimentaria. Departamento Mejora Genética y BiotecnologÃa; EspañaFil: Garaicoechea, Lorena Laura. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Fernández, Fernando. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; ArgentinaFil: Bok, Karin. National Institutes of Health; Estados UnidosFil: Wigdorovitz, Andrés. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Saif, Linda J.. Ohio State University; Estados UnidosFil: Parreño, Gladys Viviana. Instituto Nacional de TecnologÃa Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de VirologÃa; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; Argentin
Phylogenetic analysis of porcine rotavirus in Argentina: Increasing diversity of G4 strains and evidence of interspecies transmission
Group A rotaviruses are one of the most frequently detected viral agents associated with neonatal diarrhea in piglets. In order to characterize rotavirus (RV) strains circulating in Argentinean swine, four porcine production farms located in Buenos Aires were studied. RV strains genotyped as P[6]G4, P[6]G8 and P[1]G6 were found in piglets under 30 days of age, without diarrhea. Phylogenetic and sequence analysis of the VP7 gene from G4 strains available in databases, reveals five porcine new lineages (III-VII) and three sublineages (VIIa-VIIc). The G4 porcine Argentinean strains were grouped with a porcine RV strain isolated in Brazil and another RV strain isolated from a child with diarrhea in Mexico, constituting an American lineage (VII). On the other hand, porcine G6 and G8 were closely related to RV´s circulating in Argentinean cattle and South-American camelids, respectively. The fact that G4 porcine lineages were epidemiologically related to human strains, and G6 and G8 Argentinean porcine strains were found related to bovine and South-American camelids, respectively, suggests that pigs might play a crucial role as reservoir and generator of newly adapted emerging RV strains for human and other species.Fil: Parra, Gabriel I.. Universidad Nacional de Asunción; ParaguayFil: Vidales, Graciela Elba. Universidad Nacional de Luján. Departamento de TecnologÃa; ArgentinaFil: Gomez, Jorge A.. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Fernandez, Fernando M.. Instituto Nacional de TecnologÃa Agropecuaria; ArgentinaFil: Parreño, Gladys Viviana. Instituto Nacional de TecnologÃa Agropecuaria; Argentina. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Bok, Karin. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; Argentin
Kreuth V initiative: European consensus proposals for treatment of hemophilia using standard products, extended half-life coagulation factor concentrates and non-replacement therapies
This report contains the updated consensus recommendations for optimal hemophilia care produced in 2019 by three Working Groups (WG) on behalf of the European Directorate for Quality of Medicines and Healthcare in the frame of the Kreuth V Initiative. WG1 recommended access to prophylaxis for all patients, the achievement of plasma factor trough levels of at least 3-5% when extended half-life factor VIII (FVIII) and FIX products are used, a personalized treatment regimen, and a choice of chromogenic assays for treatment monitoring. It was also emphasized that innovative therapies should be supervised by hemophilia comprehensive care centers. WG2 recommended mandatory collection of postmarketing data to assure the long-term safety and efficacy of new hemophilia therapies, the establishment of national patient registries including the core data recommended by the European Medicines Agency and the International Society on Thrombosis and Haemostasis, with adequate support under public control, and greater collaboration to facilitate a comprehensive data evaluation throughout Europe. WG3 discussed methodological aspects of hemophilia care in the context of access decisions, particularly for innovative therapies, and recommended that clinical studies should be designed to provide the quality of evidence needed by regulatory authorities, HTA bodies and healthcare providers. The dialogue between all stakeholders in hemophilia care and patient organizations should be fostered to implement these recommendations
Diversity of Murine Norovirus Strains Isolated from Asymptomatic Mice of Different Genetic Backgrounds within a Single U.S. Research Institute
Antibody prevalence studies in laboratory mice indicate that murine norovirus (MNV) infections are common, but the natural history of these viruses has not been fully established. This study examined the extent of genetic diversity of murine noroviruses isolated from healthy laboratory mice housed in multiple animal facilities within a single, large research institute- the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIAID-NIH) in Bethesda, Maryland, U.S. Ten distinct murine norovirus strains were isolated from various tissues and feces of asymptomatic wild type sentinel mice as well as asymptomatic immunodeficient (RAG 2−/−) mice. The NIH MNV isolates showed little cytopathic effect in permissive RAW264.7 cells in early passages, but all isolates examined could be adapted to efficient growth in cell culture by serial passage. The viruses, although closely related in genome sequence, were distinguishable from each other according to facility location, likely due to the introduction of new viruses into each facility from separate sources or vendors at different times. Our study indicates that the murine noroviruses are widespread in these animal facilities, despite rigorous guidelines for animal care and maintenance
Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators
Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines
Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators
Safety of COVID-19 vaccines, their components or their platforms for pregnant women: A rapid review.
BACKGROUND: Pregnant women with COVID-19 are at an increased risk of severe COVID-19 illness as well as adverse pregnancy and birth outcomes. Many countries are vaccinating or considering vaccinating pregnant women with limited available data about the safety of this strategy. Early identification of safety concerns of COVID-19 vaccines, including their components, or their technological platforms is therefore urgently needed. METHODS: We conducted a rapid systematic review, as the first phase of an ongoing full systematic review, to evaluate the safety of COVID-19 vaccines in pregnant women, including their components, and their technological platforms (whole virus, protein, viral vector or nucleic acid) used in other vaccines, following the Cochrane methods and the PRISMA statement for reporting (PROSPERO-CRD42021234185).We searched literature databases, COVID-19 and pregnancy registries from inception February 2021 without time or language restriction and explored the reference lists of relevant systematic reviews retrieved. We selected studies of any methodological design that included at least 50 pregnant women or pregnant animals exposed to the vaccines that were selected for review by the COVAX MIWG in August 2020 or their components or platforms included in the COVID-19 vaccines, and evaluated adverse events during pregnancy and the neonatal period.Pairs of reviewers independently selected studies through the COVIDENCE web software and performed the data extraction through a previously piloted online extraction form. Discrepancies were resolved by consensus. RESULTS: We identified 6768 records, 256 potentially eligible studies were assessed by full-text, and 37 clinical and non-clinical studies (38 reports, involving 2,397,715 pregnant women and 56 pregnant animals) and 12 pregnancy registries were included.Most studies (89%) were conducted in high-income countries. The most frequent study design was cohort studies (n=21), followed by surveillance studies, randomized controlled trials, and registry analyses. Most studies (76%) allowed comparisons between vaccinated and unvaccinated pregnant women (n=25) or animals (n=3) and reported exposures during the three trimesters of pregnancy.The most frequent exposure was to AS03 adjuvant in the context of A/H1N1 pandemic influenza vaccines (n=24), followed by aluminum-based adjuvants (n=11). Aluminum phosphate was used in Respiratory Syncytial Virus Fusion candidate vaccines (n=3) and Tdap vaccines (n=3). Different aluminum-based adjuvants were used in hepatitis vaccines. The replication-deficient simian adenovirus ChAdOx1 was used for a Rift Valley fever vaccine. Only one study reported exposure to messenger RNA (mRNA) COVID-19 vaccines that also used lipid nanoparticles. Except for one preliminary report about A/H1N1 influenza vaccination (adjuvant AS03) - corrected by the authors in a more thorough analysis, all studies concluded that there were no safety concerns. CONCLUSION: This rapid review found no evidence of pregnancy-associated safety concerns of COVID-19 vaccines that were selected for review by the COVAX MIWG or of their components or platforms when used in other vaccines. However, the need for further data on several vaccine platforms and components is warranted given their novelty. Our findings support current WHO guidelines recommending that pregnant women may consider receiving COVID-19 vaccines, particularly if they are at high risk of exposure or have comorbidities that enhance the risk of severe disease
Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk
Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10-12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10-10 and 2.21 × 10-6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.This work was supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014 and SysInflame, grant 01ZX1306A), and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the DFG as part of the Sonderforschungsbereich CRC 1123 (B2). T.K. was supported by a DZHK Rotation Grant. I.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence ‘Inflammation at Interfaces’. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001 - Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre
- …