20 research outputs found
TESS Hunt for Young and Maturing Exoplanets (THYME). X. A Two-planet System in the 210 Myr MELANGE-5 Association
Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methodsâisochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variabilityâwe estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80â110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 Râ and 2.88 ± 0.10 Râ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 Râ), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST
TESS Hunt for Young and Maturing Exoplanets (THYME). X. A Two-planet System in the 210 Myr MELANGE-5 Association
Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods-isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability-we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80-110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 Râ and 2.88 ± 0.10 Râ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R * = 0.44 Râ), and cool (T eff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
TESS Hunt for Young and Maturing Exoplanets (THYME) VII : Membership, rotation, and lithium in the young cluster Group-X and a new young exoplanet
The public, all-sky surveys Gaia and TESS provide the ability to identify new
young associations and determine their ages. These associations enable study of
planetary evolution by providing new opportunities to discover young
exoplanets. A young association was recently identified by Tang et al. and
F{\"u}rnkranz et al. using astrometry from Gaia (called "Group-X" by the
former). In this work, we investigate the age and membership of this
association; and we validate the exoplanet TOI 2048 b, which was identified to
transit a young, late G dwarf in Group-X using photometry from TESS. We first
identified new candidate members of Group-X using Gaia EDR3 data. To infer the
age of the association, we measured rotation periods for candidate members
using TESS data. The clear color--period sequence indicates that the
association is the same age as the Myr-old NGC 3532. We obtained
optical spectra for candidate members that show lithium absorption consistent
with this young age. Further, we serendipitously identify a new, small
association nearby Group-X, which we call MELANGE-2. Lastly, we statistically
validate TOI 2048 b, which is \rearth\ radius planet on a 13.8-day
orbit around its 300 Myr-old host star.Comment: Revised to correct error in reported planet radius (original: 2.1
Earth radii, corrected: 2.6 Earth radii) and units for planetary radius ratio
entries in Table 8. All data tables available open-access with the AJ articl
TESS Hunt for Young and Maturing Exoplanets (THYME). X. A Two-planet System in the 210 Myr MELANGE-5 Association
Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methodsâisochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variabilityâwe estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80â110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 Râ and 2.88 ± 0.10 Râ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 Râ), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST
TESS hunt for young and maturing exoplanets (THYME). X. A two-planet system in the 210 Myr MELANGE-5 association
Funding: P.C.T. was supported by an NSF Graduate Research Fellowship (DGE-1650116), the NC Space Grant Graduate Research Fellowship, the Zonta International Amelia Earhart Fellowship, and the Jack Kent Cooke Foundation Graduate Scholarship. A.W.M. was supported by grants from the NSF CAREER program (AST-2143763) and NASAâs exoplanet research program (XRP 80NSSC21K0393). M.G.B. was supported by an NSF Graduate Research Fellowship (DGE2040435) and the NC Space Grant Graduate Research Fellowship. F.J.P. acknowledges financial support from the grant CEX2021-001131-S funded by MCIN/AEI/ 10.13039/ 501100011033 and through projects PID2019-109522GB-C52 and PID2022-137241NB-C43. This research also received funding from the European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation program (grant agreement No. 803193/BEBOP) and from the Science and Technology Facilities Council (STFC; grant No. ST/S00193X/1). The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant T.0109.20 and by the Francqui Foundation. K.A.C. acknowledges support from the TESS mission via subaward s3449 from MIT. M.K. acknowledges support from the MIT Kavli Institute as a Juan Carlos Torres Fellow. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T.Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methodsâisochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variabilityâwe estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80â110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (Notch and LOCoR). We find that the planets are 2.10 ± 0.09 Râ and 2.88 ± 0.10 Râ and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K = 9.1 mag), small (R* = 0.44 Râ), and cool (Teff = 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST.Peer reviewe
Erratum: âThe eighth data release of the Sloan Digital Sky Survey: first data from SDSS-IIIâ (2011, ApJS, 193, 29)
Section 3.5 of Aihara et al. (2011) described various sources of systematic error in the astrometry of the imaging data of the Sloan Digital Sky Survey (SDSS). In addition to these sources of error, there is an additional and more serious error, which introduces a large systematic shift in the astrometry over a large area around the north celestial pole. The region has irregular boundaries but in places extends as far south as declination ÎŽ â 41âŠ. The sense of the shift is that the positions of all sources in the affected area are offset by roughly 250 mas in a northwest direction. We have updated the SDSS online documentation to reflect these errors, and to provide detailed quality information for each SDSS field
SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems
Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II),
SDSS-III is a program of four spectroscopic surveys on three scientific themes:
dark energy and cosmological parameters, the history and structure of the Milky
Way, and the population of giant planets around other stars. In keeping with
SDSS tradition, SDSS-III will provide regular public releases of all its data,
beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an
overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5
million massive galaxies and Lya forest spectra of 150,000 quasars, using the
BAO feature of large scale structure to obtain percent-level determinations of
the distance scale and Hubble expansion rate at z<0.7 and at z~2.5. SEGUE-2,
which is now completed, measured medium-resolution (R=1800) optical spectra of
118,000 stars in a variety of target categories, probing chemical evolution,
stellar kinematics and substructure, and the mass profile of the dark matter
halo from the solar neighborhood to distances of 100 kpc. APOGEE will obtain
high-resolution (R~30,000), high signal-to-noise (S/N>100 per resolution
element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars,
measuring separate abundances for ~15 elements per star and creating the first
high-precision spectroscopic survey of all Galactic stellar populations (bulge,
bar, disks, halo) with a uniform set of stellar tracers and spectral
diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars
with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to
detect giant planets with periods up to two years, providing an unprecedented
data set for understanding the formation and dynamical evolution of giant
planet systems. (Abridged)Comment: Revised to version published in The Astronomical Journa