8 research outputs found

    Wildlife ecological risk assessment in the 21st century: Promising technologies to assess toxicological effects

    Get PDF
    Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air‐breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the “eco” component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to post-registration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory‐ and field‐derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole‐animal data and simple hazard ratios

    Published at Univ. of Calif

    Get PDF
    AbstrAct: New regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides in the United States, and in some situations this action may be offset by expanded use of first-generation compounds. We have recently conducted several studies with captive adult American kestrels and eastern screech-owls examining the toxicity of diphacinone (DPN) using both acute oral and short-term dietary exposure regimens. Diphacinone evoked overt signs of intoxication and lethality in these raptors at exposure doses that were 20 to 30 times lower than reported for traditionally used wildlife test species (mallard and northern bobwhite). Sublethal exposure of kestrels and owls resulted in prolonged clotting time, reduced hematocrit, and/or gross and histological evidence of hemorrhage at daily doses as low as 0.16 mg DPN/kg body weight. Findings also demonstrated that DPN was far more potent in short-term 7-day dietary studies than in single-day acute oral exposure studies. Incorporating these kestrel and owl data into deterministic and probabilistic risk assessments indicated that the risks associated with DPN exposure for raptors are far greater than predicted in analyses using data from mallards and bobwhite. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs

    Accumulation and Maternal Transfer of Polychlorinated Biphenyls in Snapping Turtles of the Upper Hudson River, New York, USA

    No full text
    We conducted field studies over three years to assess body burdens and maternal transfer of polychlorinated biphenyls (PCBs) as well as indices of sexual dimorphism in snapping turtles (Chelydra serpentina) of the upper Hudson River (NY, USA.) We collected adult turtles in areas known to be contaminated with PCBs and in nearby reference areas for measurement of body size, precloacal length, and penis size. We analyzed PCB concentrations in eggs collected over three years and in whole blood from adults in one year. Total PCB concentrations (mean +/- standard error) in eggs were 2,800 +/- 520 and 59 +/- 5 ng/g wet weight in the contaminated area and the reference area, respectively. Eggs from the contaminated area were significantly enriched in tri-, penta-, and hepta-PCBs relative to the reference area. Blood from adults in the contaminated area averaged 475 +/- 200 and 125 +/- 34 ng/g wet weight for males and females, respectively. In the reference area, blood PCB concentrations were 7 +/- 3 and 4 +/- 1 ng/g wet weight for males and females, respectively. Significant positive relationships were found between carapace length and blood PCB concentration for both sexes in the contaminated area; however, only a marginal relationship was found between female carapace length and concentration of PCBs in their eggs. Our results suggest that PCB contamination of the upper Hudson River presents risks of establishing high body burdens and of maternal transfer of PCBs to eggs, although our measures of gross morphology revealed no discernable expression of abnormal sexual development or reproduction

    Comparative Risk Assessment of the First-Generation Anticoagulant Rodenticide Diphacinone to Raptors

    Get PDF
    New regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides in the United States, and in some situations this action may be offset by expanded use of first-generation compounds. We have recently conducted several studies with captive adult American kestrels and eastern screech-owls examining the toxicity of diphacinone (DPN) using both acute oral and short-term dietary exposure regimens. Diphacinone evoked overt signs of intoxication and lethality in these raptors at exposure doses that were 20 to 30 times lower than reported for traditionally used wildlife test species (mallard and northern bobwhite). Sublethal exposure of kestrels and owls resulted in prolonged clotting time, reduced hematocrit, and/or gross and histological evidence of hemorrhage at daily doses as low as 0.16 mg DPN/kg body weight. Findings also demonstrated that DPN was far more potent in short-term 7-day dietary studies than in single-day acute oral exposure studies. Incorporating these kestrel and owl data into deterministic and probabilistic risk assessments indicated that the risks associated with DPN exposure for raptors are far greater than predicted in analyses using data from mallards and bobwhite. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs

    Assessment of toxicity and potential risk of the anticoagulant rodenticide diphacinone using Eastern screech-owls (\u3ci\u3eMegascops asio\u3c/i\u3e)

    Get PDF
    In the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g., diphacinone; DPN). Single-day acute oral exposure of adult Eastern screech-owls (Megascops asio) to DPN evoked overt signs of intoxication, coagulopathy, histopathological lesions (e.g., hemorrhage, hepatocellular vacuolation), and/ or lethality at doses as low as 130 mg/kg body weight, although there was no dose–response relation. However, this single-day exposure protocol does not mimic the multiple-day field exposures required to cause mortality in rodent pest species and non-target birds and mammals. In 7-day feeding trials, similar toxic effects were observed in owls fed diets containing 2.15, 9.55 or 22.6 ppm DPN, but at a small fraction (\u3c5%) of the acute oral dose. In the dietary trial, the average lowest-observed-adverse-effectlevel for prolonged clotting time was 1.68 mg DPN/kg owl/week (0.24 mg/kg owl/day; 0.049 mg/owl/day) and the lowest lethal dose was 5.75 mg DPN/kg owl/week (0.82 mg/kg owl/day). In this feeding trial, DPN concentration in liver ranged from 0.473 to 2.21 ”g/g wet weight, and was directly related to the daily and cumulative dose consumed by each owl. A probabilistic risk assessment indicated that daily exposure to as little as 3–5 g of liver from DPN-poisoned rodents for 7 days could result in prolonged clotting time in the endangered Hawaiian shorteared owl (Asio flammeus sandwichensis) and Hawaiian hawk (Buteo solitarius), and daily exposure to greater quantities (9–13 g of liver) could result in low-level mortality. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs

    Toxicological effects assessment for wildlife in the 21st century: Review of current methods and recommendations for a path forward

    Get PDF
    Model species (e.g., granivorous gamebirds, waterfowl, passerines, domesticated rodents) have been used for decades in guideline laboratory tests to generate survival, growth, and reproductive data for prospective ecological risk assessments (ERAs) for birds and mammals, while officially adopted risk assessment schemes for amphibians and reptiles do not exist. There are recognized shortcomings of current in vivo methods as well as uncertainty around the extent to which species with different life histories (e.g., terrestrial amphibians, reptiles, bats) than these commonly used models are protected by existing ERA frameworks. Approaches other than validating additional animal models for testing are being developed, but the incorporation of such new approach methodologies (NAMs) into risk assessment frameworks will require robust validations against in vivo responses. This takes time, and the ability to extrapolate findings from nonanimal studies to organism‐ and population‐level effects in terrestrial wildlife remains weak. Failure to adequately anticipate and predict hazards could have economic and potentially even legal consequences for regulators and product registrants. In order to be able to use fewer animals or replace them altogether in the long term, vertebrate use and whole organism data will be needed to provide data for NAM validation in the short term. Therefore, it is worth investing resources for potential updates to existing standard test guidelines used in the laboratory as well as addressing the need for clear guidance on the conduct of field studies. Herein, we review the potential for improving standard in vivo test methods and for advancing the use of field studies in wildlife risk assessment, as these tools will be needed in the foreseeable future
    corecore