3 research outputs found

    Overexpression of mcl-1 attenuates liver injury and fibrosis in the bile duct-ligated mouse.

    Get PDF
    Hepatocyte apoptosis contributes to liver injury and fibrosis after cholestatic injury. Our aim was to ascertain if the anti-apoptotic protein Mcl-1 alters liver injury or fibrosis in the bile duct-ligated mouse. Markers of apoptosis and fibrosis were compared in wild-type and transgenic mice expressing human Mcl-1 after bile duct ligation. Compared to hMcl-1 transgenic animals, ligated wild-type mice displayed a significant increase in TUNEL-positive cells and in caspase 3/7-positive hepatocytes. Consistent with apoptotic injury, the pro-apoptotic protein Bak underwent a conformational change to an activated form upon cholestatic injury, a change mitigated by hMcl-1 overexpression. Likewise, liver histology, number of bile infarcts, serum ALT values, markers of hepatic fibrosis, and animal survival were improved in bile duct-ligated mice transgenic for hMcl-1 as compared to wild-type mice. In conclusion, increased Mcl-1 expression plays a role in hepatoprotection upon cholestatic liver injury

    Dynamic changes in Mcl-1 expression regulate macrophage viability or commitment to apoptosis during bacterial clearance

    Get PDF
    Macrophages are critical effectors of bacterial clearance and must retain viability, despite exposure to toxic bacterial products, until key antimicrobial functions are performed. Subsequently, host-mediated macrophage apoptosis aids resolution of infection. The ability of macrophages to make this transition from resistance to susceptibility to apoptosis is important for effective host innate immune responses. We investigated the role of Mcl-1, an essential regulator of macrophage lifespan, in this switch from viability to apoptosis, using the model of pneumococcal-associated macrophage apoptosis. Upon exposure to pneumococci, macrophages initially upregulate Mcl-1 protein and maintain viability for up to 14 hours. Subsequently, macrophages reduce expression of full-length Mcl-1 and upregulate a 34-kDa isoform of Mcl-1 corresponding to a novel BH3-only splice variant, Mcl-1(Exon-1). Change in expression of Mcl-1 protein is associated with mitochondrial membrane permeabilization, which is characterized by loss of mitochondrial inner transmembrane potential and translocation of cytochrome c and apoptosis-inducing factor. Following pneumococcal infection, macrophages expressing full-length human Mcl-1 as a transgene exhibit a delay in apoptosis and in bacterial killing. Mcl-1 transgenic mice clear pneumococci from the lung less efficiently than nontransgenic mice. Dynamic changes in Mcl-1 expression determine macrophage viability as well as antibacterial host defense

    Overexpression of Mcl-1 Attenuates Liver Injury and Fibrosis in the Bile Duct–Ligated Mouse

    No full text
    Hepatocyte apoptosis contributes to liver injury and fibrosis after cholestatic injury. Our aim was to ascertain if the anti-apoptotic protein Mcl-1 alters liver injury or fibrosis in the bile duct–ligated mouse. Markers of apoptosis and fibrosis were compared in wild-type and transgenic mice expressing human Mcl-1 after bile duct ligation. Compared to hMcl-1 transgenic animals, ligated wild-type mice displayed a significant increase in TUNEL-positive cells and in caspase 3/7-positive hepatocytes. Consistent with apoptotic injury, the pro-apoptotic protein Bak underwent a conformational change to an activated form upon cholestatic injury, a change mitigated by hMcl-1 overexpression. Likewise, liver histology, number of bile infarcts, serum ALT values, markers of hepatic fibrosis, and animal survival were improved in bile duct–ligated mice transgenic for hMcl-1 as compared to wild-type mice. In conclusion, increased Mcl-1 expression plays a role in hepatoprotection upon cholestatic liver injury
    corecore