3 research outputs found

    Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation

    Get PDF
    open access articleEncapsulation of poorly water-soluble drugs into mesoporous materials (e.g. silica) has evolved as a favorable strategy to improve drug solubility and bioavailability. Several techniques (e.g. spray drying, solvent evaporation, microwave irradiation) have been utilized for the encapsulation of active pharmaceutical ingredients (APIs) into inorganic porous matrices. In the present work, a novel chalcone (KAZ3) with anticancer properties was successfully synthesized by Claisen-Schmidt condensation. KAZ3 was loaded into mesoporous (SBA-15 and MCM-41) and non-porous (fumed silica, FS) materials via two techniques; electrohydrodynamic atomization (EHDA) and solvent impregnation. The effect of both loading methods on the physicochemical properties of the particles (e.g. size, charge, entrapment efficiency, crystallinity, dissolution and permeability) was investigated. Results indicated that EHDA technique can load the active in a complete amorphous form within the pores of the silica particles. In contrast, reduced crystallinity (~79%) was obtained for the solvent impregnated formulations. EHDA engineered formulations significantly improved drug dissolution up to 30-fold, compared to the crystalline drug. Ex vivo studies showed EHDA formulations to exhibit higher permeability across rat intestine than their solvent impregnated counterparts. Cytocompatibility studies on Caco-2 cells demonstrated moderate toxicity at high concentrations of the anticancer agent. The findings of the present study clearly show the immense potential of EHDA as a loading technique for mesoporous materials to produce poorly water-soluble API carriers of high payload at ambient conditions. Furthermore, the scale up potential in EHDA technologies indicate a viable route to enhance drug encapsulation and dissolution rate of loaded porous inorganic materials

    Electrospun PVP-indomethacin constituents for transdermal dressings and drug delivery devices

    No full text
    A method in layering dressings with a superficial active layer of sub-micrometer scaled fibrous structures is demonstrated. For this, polyvinylpyrolidone (PVP) - indomethacin (INDO) fibres (5% w/v PVP, 5% w/w indomethacin, using a 50:50 ethanol-methanol solvent system) were produced at different flow rates (50μL/min and 100μL/min) via a modified electrospinning device head (applied voltage varied between 15±2kV). We further assessed these structures for their chemical, physical and morphological properties using SEM, AFM, DSC, XRD, FTIR and HPLC-UV. The average diameter of the resulting 3D (∼500nm in height) PVP-INDO fibres produced at 50μL/min flow rate was 2.58±0.30μm, while the diameter almost doubled (5.22±0.83μm) when the flow rate was doubled. However, both of these diameters were appreciably smaller than the existing dressing fibres (∼30μm), which were visible even when layered with the active spun fibres. Indomethacin was incorporated in the amorphous state. The encapsulation efficiency was 75% w/w, with complete drug release in 45minutes. The advantages are the ease of fabrication and deposition onto any existing normal or functionalised dressing (retaining the original fabric functionality), elimination of topical product issues (application, storage and transport), rapid release of active and controlled loading of drug content (fibre layer). Electrospun PVP-indomethacin constituents for transdermal dressings and drug delivery devices
    corecore