228 research outputs found
Fissure ridges: A reappraisal of faulting and travertine deposition (travitonics)
The mechanical discontinuities in the upper crust (i.e., faults and related fractures) lead to the uprising of geothermal fluids to the Earth’s surface. If fluids are enriched in Ca2+ and HCO3‐, masses of CaCO3 (i.e., travertine deposits) can form mainly due to the CO2 leakage from the thermal waters. Among other things, fissure‐ridge‐type deposits are peculiar travertine bodies made of bedded carbonate that gently to steeply dip away from the apical part where a central fissure is located, corresponding to the fracture trace intersecting the substratum; these morpho‐tectonic features are the most useful deposits for tectonic and paleoseismological investigation, as their development is contemporaneous with the activity of faults leading to the enhancement of permeability that serves to guarantee the circulation of fluids and their emergence. Therefore, the fissure ridge architecture sheds light on the interplay among fault activity, travertine deposition, and ridge evolution, providing key geo‐chronologic constraints due to the fact that travertine can be dated by different radio-metric methods. In recent years, studies dealing with travertine fissure ridges have been consider-ably improved to provide a large amount of information. In this paper, we report the state of the art of knowledge on this topic refining the literature data as well as adding original data, mainly focusing on the fissure ridge morphology, internal architecture, depositional facies, growth mechanisms, tectonic setting in which the fissure ridges develop, and advantages of using the fissure ridges for neotectonic and seismotectonic studies
Preliminary documentation of coseismic ground failure triggered by the February 6, 2023 Türkiye earthquake sequence
The devastating Kahramanmaraş earthquake sequence occurred on February 6, 2023. Two main events, Mw 7.8 and Mw 7.5 occurred 9 hours apart, affected 11 cities in Turkey, and subjected an area of ∼90,000 km2 to shaking levels known to trigger landslides (peak ground acceleration > 0.08 g). Extensive landsliding was expected given the hilly terrain affected by this significant ground shaking—about 15% of the topography is steeper than 20°—but was not initially apparent in early satellite imagery, mostly because of obscuring snow that fell just after the earthquakes. However, after a more detailed investigation using high-resolution satellite images, aerial photos, and a field survey, we confirmed that this earthquake sequence did, indeed, trigger numerous landslides. In this study, we present those findings and provide a preliminary characterization of the spatial distribution, general characteristics, and dominant types of landslides and hillslope deformation triggered by the earthquake sequence. We mapped 3673 coseismic landslides, mostly concentrated in the northern half of the impacted area. Rock falls are the most abundant landslide type, but bedrock rotational landslides, translational slides and lateral spreads are also numerous. Surface rupture through mountainous terrain caused several large, and in some cases fatal, landslides. Incipient landslides and ground cracks are also widespread, especially in the north. Lithology, spatial variability of ground shaking, and topographic relief appear to be the main variables controlling the spatial distribution of coseismic landslides. There are few detailed studies of earthquake-triggered landslides in arid and semi-arid regions such as this one, nor for such complex earthquake sequences. Therefore, this contribution provides valuable information for future hazard and modeling efforts in arid and semi-arid regions
Determinants of promoter and enhancer transcription directionality in metazoans
Divergent transcription from promoters and enhancers is pervasive in many species, but it remains unclear if it is a general feature of all eukaryotic cis regulatory elements. To address this, here we define cis regulatory elements in C. elegans, D. melanogaster and H. sapiens and investigate the determinants of their transcription directionality. In all three species, we find that divergent transcription is initiated from two separate core promoter sequences and promoter regions display competition between histone modifications on the +1 and -1 nucleosomes. In contrast, promoter directionality, sequence composition surrounding promoters, and positional enrichment of chromatin states, are different across species. Integrative models of H3K4me3 levels and core promoter sequence are highly predictive of promoter and enhancer directionality and support two directional classes, skewed and balanced. The relative importance of features to these models are clearly distinct for promoters and enhancers. Differences in regulatory architecture within and between metazoans are therefore abundant, arguing against a unified eukaryotic model
Analytical solution of second Stokes problem of behaviour of rarefied gas with Cercignani boundary accomodation conditions
Analytical solution of second Stokes problem of behaviour of rarefied gas
with Cercignani boundary accomodation conditions The second Stokes problem
about behaviour of rarefied gas filling half-space is analytically solved. A
plane, limiting half-space, makes harmonious fluctuations in the plane. The
kinetic BGK-equation (Bhatnagar, Gross, Krook) is used. The boundary
accomodation conditions of Cercignani of reflexion gaseous molecules from a
wall are considered. Distribution function of the gaseous molecules is
constructed. The velocity of gas in half-space is found, also its value direct
at a wall is found. The force resistance operating from gas on border is found.
Besides, the capacity of dissipation of the energy falling to unit of area of
the fluctuating plate limiting gas is obtained.Comment: 26 pages, 5 figure
Paleoseismic History of the Dead Sea Fault Zone
International audienceThe aim of this entry is to describe the DSF as a transform plate boundary pointing out the rate of activedeformation, fault segmentation, and geometrical complexities as a control of earthquake ruptures. Thedistribution of large historical earthquakes from a revisited seismicity catalogue using detailedmacroseismic maps allows the correlation between the location of past earthquakes and fault segments.The recent results of paleoearthquake investigations (paleoseismic and archeoseismic) with a recurrenceinterval of large events and long-term slip rate are presented and discussed along with the identification ofseismic gaps along the fault. Finally, the implications for the seismic hazard assessment are also discussed
Heteroclinic Ratchets in a System of Four Coupled Oscillators
We study an unusual but robust phenomenon that appears in an example system
of four coupled phase oscillators. We show that the system can have a robust
attractor that responds to a specific detuning between certain pairs of the
oscillators by a breaking of phase locking for arbitrary positive detunings but
not for negative detunings. As the dynamical mechanism behind this is a
particular type of heteroclinic network, we call this a 'heteroclinic ratchet'
because of its dynamical resemblance to a mechanical ratchet
- …