8,895 research outputs found
Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure-response analysis of a Phase III study.
PurposeDasatinib is a prototypic short half-life BCR-ABL1 tyrosine kinase inhibitor. The recommended dose of dasatinib for chronic myeloid leukemia in chronic phase was changed from 70 mg twice daily to 100 mg once daily following a Phase III dose-optimization study. To better understand the superior benefit-risk profile of dasatinib 100 mg once daily, exposure-response was characterized for efficacy (major cytogenetic response) and safety (pleural effusion).Patients and methodsDasatinib exposure in patients with chronic myeloid leukemia in chronic phase was determined by population pharmacokinetic analysis of data from seven dasatinib clinical studies (N = 981), including the Phase III dose-optimization study (n = 567). Data from the Phase III study were then used to characterize exposure-response relationships for the four dasatinib treatment regimens investigated (100 mg once daily, 50 mg twice daily, 140 mg once daily, and 70 mg twice daily).ResultsMajor cytogenetic response was significantly (P < 0.01) associated with weighted average steady-state dasatinib plasma concentrations, and pleural effusion was significantly associated with trough concentration. Major cytogenetic response was also significantly associated with maintenance of uninterrupted dosing. The 100 mg once daily arm had the lowest steady-state trough concentration of the four dose arms investigated in the Phase III study, and although this arm also had the lowest weighted average steady-state dasatinib plasma concentration, it had the highest dose maintenance.ConclusionDasatinib dose optimization to 100 mg once daily from 70 mg twice daily significantly minimizes adverse events while maintaining efficacy by exploiting differences in the measures of exposure associated with efficacy and safety
Lymphotoxin is an autocrine growth factor for Epstein-Barr virus-infected B cell lines.
Because human lymphotoxin (LT) was originally isolated from a lymphoblastoid cell line, we investigated the role of this molecule in three newly established Epstein-Barr virus (EBV)-infected human B cell lines. These lines were derived from acute lymphoblastic leukemia (Z-6), myelodysplastic syndrome (Z-43), and acute myelogenous leukemia (Z-55) patients who had a prior EBV infection. Each lymphoblastoid cell line had a karyotype that was different from that of the original parent leukemic cells, and all expressed B cell, but not T cell or myeloid surface markers. In all three lines, rearranged immunoglobulin heavy chain joining region (JH) bands were found, and the presence of EBV DNA was confirmed by Southern blotting. Z-6, Z-43, and Z-55 cell lines constitutively produced 192, 48, and 78 U/ml LT, respectively, as assessed by a cytotoxicity assay and antibody neutralization. Levels of tumor necrosis factor (TNF) were undetectable. Scatchard analysis revealed that all the cell lines expressed high-affinity TNF/LT receptors with receptor densities of 4197, 1258, and 1209 sites/cell on Z-6, Z-43, and Z-55, respectively. Furthermore, labeled TNF binding could be reversed by both unlabeled TNF, as well as by LT. Studies with p60 and p80 receptor-specific antibodies revealed that the three lines expressed primarily the p80 form of the TNF receptor. When studied in a clonogenic assay, exogenous LT stimulated proliferation of all three cell lines in a dose-dependent fashion at concentrations ranging from 25 to 500 U/ml. Similar results were obtained with [3H]TdR incorporation. Monoclonal anti-LT neutralizing antibodies at concentrations of 25-500 U/ml inhibited cellular multiplication in a dose-dependent manner. It is interesting that in spite of a common receptor, TNF (1,000 U/ml) had no direct effect on Z-55 cell growth, whereas it partially reversed the stimulatory effect of exogenous LT. In addition, TNF inhibited Z-6 and Z-43 cell proliferation, and its suppressive effect was reversed by exogenous LT. Both p80 and p60 forms of soluble TNF receptors suppressed the lymphoblastoid cell line proliferation and their inhibitory effect was partially reversed by LT. Our data suggest that (a) LT is an autocrine growth factor for EBV-transformed lymphoblastoid B cell lines; and (b) anti-LT antibodies, soluble TNF/LT receptors, and TNF itself can suppress the growth of lymphoblastoid cells, probably by modulating or competing with LT.(ABSTRACT TRUNCATED AT 400 WORDS
Management of imatinib-resistant CML patients
Imatinib has had marked impact on outcomes in chronic myelogenous leukemia (CML) patients for all stages of the disease and is endorsed by international treatment guidelines as the first line option. Although imatinib is highly effective and well tolerated, the development of resistance represents a clinical challenge. Since the most frequently identified mechanism of acquired imatinib resistance is bcr-abl kinase domain point mutations, periodic hematologic, cytogenetic, and molecular monitoring is critical throughout imatinib therapy. Once cytogenetic remission is achieved, residual disease can be monitored by bcr-abl transcript levels as assayed by reverse transcription polymerase chain reaction (RT-PCR). Detection of bcr-abl mutants prior to and during imatinib therapy can aid in risk stratification as well as in determining therapeutic strategies. Thus, mutation screening is indicated in patients lacking or losing hematologic response. Moreover, search for mutations should also be performed when a 3-log reduction of bcr-abl transcripts is not achieved or there is a reproducible increase of transcript levels. In patients harboring mutations which confer imatinib resistance, novel second line tyrosine kinase inhibitors have demonstrated encouraging efficacy with low toxicity. Only the T315I bcr-abl mutant has proved totally resistant to all clinically available bcr-abl inhibitors. Strategies to further increase the rates of complete molecular remissions represent the next frontier in the targeted therapy of CML patients
Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors.
BackgroundIn 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed.ResultsPre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = -0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = -0.45, P = 0.19).ConclusionsIn conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation
Recommended from our members
Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics.
Progress in the management of patients with myelodysplastic syndromes (MDS) has been hampered by the inability to detect cytogenetic abnormalities in 40-60% of cases. We prospectively analyzed matched pairs of bone marrow and buccal cell (normal) DNA samples from 51 MDS patients by single nucleotide polymorphism (SNP) arrays, and identified somatically acquired clonal genomic abnormalities in 21 patients (41%). Among the 33 patients with normal bone marrow cell karyotypes, 5 (15%) had clonal, somatically acquired aberrations by SNP array analysis, including 4 with segmental uniparental disomies (UPD) and 1 with three separate microdeletions. Each abnormality was detected more readily in CD34+ cells than in unselected bone marrow cells. Paired analysis of bone marrow and buccal cell DNA from each patient was necessary to distinguish true clonal genomic abnormalities from inherited copy number variations and regions with apparent loss of heterozygosity. UPDs affecting chromosome 7q were identified in two patients who had a rapidly deteriorating clinical course despite a low-risk International Prognostic Scoring System score. Further studies of larger numbers of patients will be needed to determine whether 7q UPD detected by SNP array analysis will identify higher risk MDS patients at diagnosis, analogous to those with 7q cytogenetic abnormalities
Pulmonary Hypertension Is a Frequent Event in Patients with Chronic Myeloid Leukemia Treated with Tyrosine Kinase Inhibitors
Poster presented at American Society of Clinical Oncology in Chicago Illinois.
Background: Tyrosine kinase inhibitors (TKI) are the current standard therapy for patients with chronic myeloid leukemia (CML). Fluid retention and pleural effusions have been reported in patients treated with TKIs, particularly with dasatinib. Although TKIs have been shown to reverse pulmonary hypertension (PH) in animal models, there have been some reports of development of reversible PH with dasatinib.
Methods: We conducted a retrospective analysis on 401 patients diagnosed with CML in chronic phase (CP) who were treated with TKIs (imatinib, dasatinib, or nilotinib) as initial therapy for CML and had a transthoracic echocardiogram (TTE) done at some point during the course of therapy. PH was diagnosed if the patient had an estimated right ventricular systolic pressure (RVSP) of 35 mm Hg or greater. Secondary causes of PH (systolic or diastolic dysfunction on TTE, chronic obstructive pulmonary diseases [COPD], obstructive sleep apnea [OSA] and pulmonary embolism) were investigated during chart review.
Results: Twenty (23%) out of 87 patients had evidence of PH by TTE; median age 57 years, with 46% being males. Six pts (30%) received nilotinib 400mg twice daily, 4 (20%) patients had imatinib (400mg; n=1, 600mg; n=1 and 800mg daily; n=2), and 10 (50%) patients received dasatinib (dose varied 40-140mg daily). Five (25%) patients had coronary artery disease, 9 (45%) had systemic hypertension, 2 (10%) had COPD and 3 (15%) had OSA. Thirteen pts had serial TTE to compare the progression of PH including 6 (7%) who had a TTE prior to starting TKI. Among these 13 pts with serial TTE, 7 had rising RVSP with one patient having mild global hypokinesia, another with diastolic dysfunction and another with OSA. Four of those 7 patients had normal RVSP on their TTE prior to starting therapy. Six other pts had improvement in the RVSP on serial TTE, 4 of them with systemic hypertension. Two of those 6 patients had elevated RVSP on their TTE prior to starting therapy; one pt had no change. Eleven patients had pleural effusions (7 dasatinib, 3 imatinib, 1 nilotinib) associated with PH.
Conclusions: TKI therapy is occasionally associated with development of PH, but RVSP may improve spontaneously in some patients. A prospective study is needed to further investigate the relationship between TKIs and the development of PH
BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase
BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.T P Hughes, G Saglio, A Quintás-Cardama, M J Mauro, D-W Kim, J H Lipton6, M B Bradley-Garelik, J Ukropec and A Hochhau
- …
