342 research outputs found
Evolving Planck Mass in Classically Scale-Invariant Theories
We consider classically scale-invariant theories with non-minimally coupled
scalar fields, where the Planck mass and the hierarchy of physical scales are
dynamically generated. The classical theories possess a fixed point, where
scale invariance is spontaneously broken. In these theories, however, the
Planck mass becomes unstable in the presence of explicit sources of scale
invariance breaking, such as non-relativistic matter and cosmological constant
terms. We quantify the constraints on such classical models from Big Bang
Nucleosynthesis that lead to an upper bound on the non-minimal coupling and
require trans-Planckian field values. We show that quantum corrections to the
scalar potential can stabilise the fixed point close to the minimum of the
Coleman-Weinberg potential. The time-averaged motion of the evolving fixed
point is strongly suppressed, thus the limits on the evolving gravitational
constant from Big Bang Nucleosynthesis and other measurements do not presently
constrain this class of theories. Field oscillations around the fixed point, if
not damped, contribute to the dark matter density of the Universe.Comment: 28 pages, 2 figures, version published in JHE
Impact of semi-annihilations on dark matter phenomenology - an example of Z_N symmetric scalar dark matter
We study the impact of semi-annihilations x_i x_j x_k X, where x_i is any
dark matter and X is any standard model particle, on dark matter phenomenology.
We formulate minimal scalar dark matter models with an extra doublet and a
complex singlet that predict non-trivial dark matter phenomenology with
semi-annihilation processes for different discrete Abelian symmetries Z_N, N>2.
We implement two such example models with Z_3 and Z_4 symmetry in micrOMEGAs
and work out their phenomenology. We show that both semi-annihilations and
annihilations involving only particles from two different dark matter sectors
significantly modify the dark matter relic abundance in this type of models. We
also study the possibility of dark matter direct detection in XENON100 in those
models.Comment: 17 pages, 4 figure
A SUSY Inspired Simplified Model for the 750 GeV Diphoton Excess
The evidence for a new singlet scalar particle from the 750 GeV diphoton
excess, and the absence of any other signal of new physics at the LHC so far,
suggest the existence of new coloured scalars. To study this possibility, we
propose a supersymmetry inspired simplified model, extending the Standard Model
with a singlet scalar and with heavy scalar fields carrying both colour and
electric charges -- the `squarks'. To allow the latter to decay, and to
generate the dark matter of the Universe, we also add a neutral fermion to the
particle content. We show that this model provides a two-parameter fit to the
observed diphoton excess consistently with cosmology, while the allowed
parameter space is bounded by the consistency of the model. In the context of
our simplified model this implies the existence of other supersymmetric
particles accessible at the LHC, rendering this scenario falsifiable. If this
excess persists, it will imply a paradigm shift in assessing supersymmetry
breaking and the role of scalars in low scale physics.Comment: 7 pages, 2 figures, SUSY incarnat
A Simple Grand Unified Relation between Neutrino Mixing and Quark Mixing
It is proposed that all flavor mixing is caused by the mixing of the three
quark and lepton families with vectorlike fermions in 5 + 5-bar multiplets of
SU(5). This simple assumption implies that both V_{CKM} and U_{MNS} are
generated by a single matrix. The entire 3-by-3 complex mass matrix of the
neutrinos M_{nu} is then found to have a simple expression in terms of two
complex parameters and an overall scale. Thus, all the presently unknown
neutrino parameters are predicted. The best fits are for theta_{atm} less than
or approximately 40 degrees. The leptonic Dirac CP phase is found to be
somewhat greater than pi radians.Comment: 10 pages, 4 figures, one table. Typos correcte
Long-lived charged Higgs at LHC as a probe of scalar Dark Matter
We study inert charged Higgs boson production and decays at LHC
experiments in the context of constrained scalar dark matter model (CSDMM). In
the CSDMM the inert doublet and singlet scalar's mass spectrum is predicted
from the GUT scale initial conditions via RGE evolution. We compute the cross
sections of processes at the LHC and show that
for light the first one is dominated by top quark mediated 1-loop
diagram with Higgs boson in s-channel. In a significant fraction of the
parameter space are long-lived because their decays to predominantly
singlet scalar dark matter (DM) and next-to-lightest (NL) scalar, are suppressed by the small singlet-doublet mixing
angle and by the moderate mass difference
The experimentally measurable displaced vertex in decays to leptons
and/or jets and missing energy allows one to discover the signal over
the huge background. We propose benchmark points for studies of this
scenario at the LHC. If, however, are short-lived, the subsequent
decays necessarily produce additional
displaced vertices that allow to reconstruct the full decay chain.Comment: 15 pages, 5 figure
Anthropic solution to the magnetic muon anomaly: the charged see-saw
We present models of new physics that can explain the muon g-2 anomaly in
accord with with the assumption that the only scalar existing at the weak scale
is the Higgs, as suggested by anthropic selection. Such models are dubbed
"charged see-saw" because the muon mass term is mediated by heavy leptons. The
electroweak contribution to the g-2 gets modified by order one factors, giving
an anomaly of the same order as the observed hint, which is strongly correlated
with a modification of the Higgs coupling to the muon.Comment: 21 pages, many equations despite the first word in the title. v3:
loop function G_WN corrected, conclusions unchange
New Solution for Neutrino Masses and Leptogenesis in Adjoint SU(5)
We investigate baryogenesis via leptogenesis and generation of neutrino
masses and mixings through the Type I plus Type III seesaw plus an one-loop
mechanism in the context of Renormalizable Adjoint SU(5) theory. One light
neutrino remains massless, because the contributions of three heavy Majorana
fermions \rho_0, \rho_3 and \rho_8 to the neutrino mass matrix are not linearly
independent. However none of these heavy fermions is decoupled from the
generation of neutrino masses. This opens a new range in parameter space for
successful leptogenesis, in particular, allows for inverted hierarchy of the
neutrino masses.Comment: 16 pages, 4 figures; references added and typos fixe
Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology
We study phenomenological implications of the ATLAS and CMS hint of a GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric
dark matter models, and for the phenomenology of the CMSSM. We show that in
scalar dark matter models the vacuum stability bound on Higgs boson mass is
lower than in the standard model and the 125 GeV Higgs boson is consistent with
the models being valid up the GUT or Planck scale. We perform a detailed study
of the full CMSSM parameter space keeping the Higgs boson mass fixed to GeV, and study in detail the freeze-out processes that imply the observed
amount of dark matter. After imposing all phenomenological constraints except
for the muon we show that the CMSSM parameter space is divided
into well separated regions with distinctive but in general heavy sparticle
mass spectra. Imposing the constraint introduces severe tension
between the high SUSY scale and the experimental measurements -- only the
slepton co-annihilation region survives with potentially testable sparticle
masses at the LHC. In the latter case the spin-independent DM-nucleon
scattering cross section is predicted to be below detectable limit at the
XENON100 but might be of measurable magnitude in the general case of light dark
matter with large bino-higgsino mixing and unobservably large scalar masses.Comment: 17 pages, 7 figures. v3: same as published versio
- …