342 research outputs found

    Evolving Planck Mass in Classically Scale-Invariant Theories

    Full text link
    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.Comment: 28 pages, 2 figures, version published in JHE

    Impact of semi-annihilations on dark matter phenomenology - an example of Z_N symmetric scalar dark matter

    Full text link
    We study the impact of semi-annihilations x_i x_j x_k X, where x_i is any dark matter and X is any standard model particle, on dark matter phenomenology. We formulate minimal scalar dark matter models with an extra doublet and a complex singlet that predict non-trivial dark matter phenomenology with semi-annihilation processes for different discrete Abelian symmetries Z_N, N>2. We implement two such example models with Z_3 and Z_4 symmetry in micrOMEGAs and work out their phenomenology. We show that both semi-annihilations and annihilations involving only particles from two different dark matter sectors significantly modify the dark matter relic abundance in this type of models. We also study the possibility of dark matter direct detection in XENON100 in those models.Comment: 17 pages, 4 figure

    A SUSY Inspired Simplified Model for the 750 GeV Diphoton Excess

    Get PDF
    The evidence for a new singlet scalar particle from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far, suggest the existence of new coloured scalars. To study this possibility, we propose a supersymmetry inspired simplified model, extending the Standard Model with a singlet scalar and with heavy scalar fields carrying both colour and electric charges -- the `squarks'. To allow the latter to decay, and to generate the dark matter of the Universe, we also add a neutral fermion to the particle content. We show that this model provides a two-parameter fit to the observed diphoton excess consistently with cosmology, while the allowed parameter space is bounded by the consistency of the model. In the context of our simplified model this implies the existence of other supersymmetric particles accessible at the LHC, rendering this scenario falsifiable. If this excess persists, it will imply a paradigm shift in assessing supersymmetry breaking and the role of scalars in low scale physics.Comment: 7 pages, 2 figures, SUSY incarnat

    A Simple Grand Unified Relation between Neutrino Mixing and Quark Mixing

    Full text link
    It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in 5 + 5-bar multiplets of SU(5). This simple assumption implies that both V_{CKM} and U_{MNS} are generated by a single matrix. The entire 3-by-3 complex mass matrix of the neutrinos M_{nu} is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for theta_{atm} less than or approximately 40 degrees. The leptonic Dirac CP phase is found to be somewhat greater than pi radians.Comment: 10 pages, 4 figures, one table. Typos correcte

    Long-lived charged Higgs at LHC as a probe of scalar Dark Matter

    Full text link
    We study inert charged Higgs boson H±H^\pm production and decays at LHC experiments in the context of constrained scalar dark matter model (CSDMM). In the CSDMM the inert doublet and singlet scalar's mass spectrum is predicted from the GUT scale initial conditions via RGE evolution. We compute the cross sections of processes pp→H+H−, H±Si0pp\to H^+H^-,\, H^\pm S_i^0 at the LHC and show that for light H±H^\pm the first one is dominated by top quark mediated 1-loop diagram with Higgs boson in s-channel. In a significant fraction of the parameter space H±H^\pm are long-lived because their decays to predominantly singlet scalar dark matter (DM) and next-to-lightest (NL) scalar, H±→SDM, NLff′,H^\pm\to S_{\text{DM, NL}} ff', are suppressed by the small singlet-doublet mixing angle and by the moderate mass difference ΔM=MH+−MDM. \Delta M=M_{H^+}-M_{\text{DM}} . The experimentally measurable displaced vertex in H±H^\pm decays to leptons and/or jets and missing energy allows one to discover the H+H−H^+H^- signal over the huge W+W−W^+W^- background. We propose benchmark points for studies of this scenario at the LHC. If, however, H±H^\pm are short-lived, the subsequent decays SNL→SDMffˉS_{\text{NL}}\to S_{\text{DM}} f\bar f necessarily produce additional displaced vertices that allow to reconstruct the full H±H^\pm decay chain.Comment: 15 pages, 5 figure

    Anthropic solution to the magnetic muon anomaly: the charged see-saw

    Full text link
    We present models of new physics that can explain the muon g-2 anomaly in accord with with the assumption that the only scalar existing at the weak scale is the Higgs, as suggested by anthropic selection. Such models are dubbed "charged see-saw" because the muon mass term is mediated by heavy leptons. The electroweak contribution to the g-2 gets modified by order one factors, giving an anomaly of the same order as the observed hint, which is strongly correlated with a modification of the Higgs coupling to the muon.Comment: 21 pages, many equations despite the first word in the title. v3: loop function G_WN corrected, conclusions unchange

    New Solution for Neutrino Masses and Leptogenesis in Adjoint SU(5)

    Full text link
    We investigate baryogenesis via leptogenesis and generation of neutrino masses and mixings through the Type I plus Type III seesaw plus an one-loop mechanism in the context of Renormalizable Adjoint SU(5) theory. One light neutrino remains massless, because the contributions of three heavy Majorana fermions \rho_0, \rho_3 and \rho_8 to the neutrino mass matrix are not linearly independent. However none of these heavy fermions is decoupled from the generation of neutrino masses. This opens a new range in parameter space for successful leptogenesis, in particular, allows for inverted hierarchy of the neutrino masses.Comment: 16 pages, 4 figures; references added and typos fixe

    Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology

    Full text link
    We study phenomenological implications of the ATLAS and CMS hint of a 125±1125\pm 1 GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric dark matter models, and for the phenomenology of the CMSSM. We show that in scalar dark matter models the vacuum stability bound on Higgs boson mass is lower than in the standard model and the 125 GeV Higgs boson is consistent with the models being valid up the GUT or Planck scale. We perform a detailed study of the full CMSSM parameter space keeping the Higgs boson mass fixed to 125±1125\pm 1 GeV, and study in detail the freeze-out processes that imply the observed amount of dark matter. After imposing all phenomenological constraints except for the muon (g−2)μ,(g-2)_\mu, we show that the CMSSM parameter space is divided into well separated regions with distinctive but in general heavy sparticle mass spectra. Imposing the (g−2)μ(g-2)_\mu constraint introduces severe tension between the high SUSY scale and the experimental measurements -- only the slepton co-annihilation region survives with potentially testable sparticle masses at the LHC. In the latter case the spin-independent DM-nucleon scattering cross section is predicted to be below detectable limit at the XENON100 but might be of measurable magnitude in the general case of light dark matter with large bino-higgsino mixing and unobservably large scalar masses.Comment: 17 pages, 7 figures. v3: same as published versio
    • …
    corecore