95 research outputs found

    Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol

    Get PDF
    Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233 K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3 µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66 % prediction bands) region of the average fit to the data, which captures 75 % of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60 nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60 nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.ISSN:1680-7375ISSN:1680-736

    The role of contact angle and pore width on pore condensation and freezing

    Get PDF
    It has recently been shown that pore condensation and freezing (PCF) is a mechanism responsible for ice formation under cirrus cloud conditions. PCF is defined as the condensation of liquid water in narrow capillaries below water saturation due to the inverse Kelvin effect, followed by either heterogeneous or homogeneous nucleation depending on the temperature regime and presence of an ice-nucleating active site. By using sol–gel synthesized silica with well-defined pore diameters, morphology and distinct chemical surface-functionalization, the role of the water–silica contact angle and pore width on PCF is investigated. We find that for the pore diameters (2.2–9.2 nm) and water contact angles (15–78°) covered in this study, our results reveal that the water contact angle plays an important role in predicting the humidity required for pore filling, while the pore diameter determines the ability of pore water to freeze. For T>235 K and below water saturation, pore diameters and water contact angles were not able to predict the freezing ability of the particles, suggesting an absence of active sites; thus ice nucleation did not proceed via a PCF mechanism. Rather, the ice-nucleating ability of the particles depended solely on chemical functionalization. Therefore, parameterizations for the ice-nucleating abilities of particles in cirrus conditions should differ from parameterizations at mixed-phase clouds conditions. Our results support PCF as the atmospherically relevant ice nucleation mechanism below water saturation when porous surfaces are encountered in the troposphere

    Pore condensation and freezing is responsible for ice formation below water saturation for porous particles

    Get PDF
    Ice nucleation in the atmosphere influences cloud properties, altering precipitation and the radiative balance, ultimately regulating Earth’s climate. An accepted ice nucleation pathway, known as deposition nucleation, assumes a direct transition of water from the vapor to the ice phase, without an intermediate liquid phase. However, studies have shown that nucleation occurs through a liquid phase in porous particles with narrow cracks or surface imperfections where the condensation of liquid below water saturation can occur, questioning the validity of deposition nucleation. We show that deposition nucleation cannot explain the strongly enhanced ice nucleation efficiency of porous compared with nonporous particles at temperatures below −40 °C and the absence of ice nucleation below water saturation at −35 °C. Using classical nucleation theory (CNT) and molecular dynamics simulations (MDS), we show that a network of closely spaced pores is necessary to overcome the barrier for macroscopic ice-crystal growth from narrow cylindrical pores. In the absence of pores, CNT predicts that the nucleation barrier is insurmountable, consistent with the absence of ice formation in MDS. Our results confirm that pore condensation and freezing (PCF), i.e., a mechanism of ice formation that proceeds via liquid water condensation in pores, is a dominant pathway for atmospheric ice nucleation below water saturation. We conclude that the ice nucleation activity of particles in the cirrus regime is determined by the porosity and wettability of pores. PCF represents a mechanism by which porous particles like dust could impact cloud radiative forcing and, thus, the climate via ice cloud formation.Fil: David, Robert O.. Institute for Atmospheric and Climate Science; SuizaFil: Marcolli, Claudia. Institute for Atmospheric and Climate Science; SuizaFil: Fahrni, Jonas. Zurich University of Applied Sciences; SuizaFil: Qiu, Yuqing. University of Utah; Estados UnidosFil: Pérez Sirkin, Yamila Anahí. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Molinero, Valeria. University of Utah; Estados UnidosFil: Mahrt, Fabian. Institute for Atmospheric and Climate Science; SuizaFil: Brühwiler, Dominik. University of Applied Sciences; SuizaFil: Lohmann, Ulrike. Institute for Atmospheric and Climate Science; SuizaFil: Kanji, Zamin A.. Institute for Atmospheric and Climate Science; Suiz

    Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions

    Get PDF
    Ice crystals occurring in mixed-phase clouds play a vital role in global precipitation and energy balance because of the unstable equilibrium between coexistent liquid droplets and ice crystals, which affects cloud lifetime and radiative properties, as well as precipitation formation. Satellite observations proved that immersion freezing, i.e., ice formation on particles immersed within aqueous droplets, is the dominant ice nucleation (IN) pathway in mixed-phase clouds. However, the impact of anthropogenic emissions on atmospheric IN in the urban environment remains ambiguous. In this study, we present in situ observations of ambient ice-nucleating particle number concentration (NINP) measured at mixed-phase cloud conditions (−30 ∘C, relative humidity with respect to liquid water RHw= 104 %) and the physicochemical properties of ambient aerosol, including chemical composition and size distribution, at an urban site in Beijing during the traditional Chinese Spring Festival. The impact of multiple aerosol sources such as firework emissions, local traffic emissions, mineral dust, and urban secondary aerosols on NINP is investigated. The results show that NINP during the dust event reaches up to 160 # L−1 (where “#” represents number of particles), with an activation fraction (AF) of 0.0036 % ± 0.0011 %. During the rest of the observation, NINP is on the order of 10−1 to 10 # L−1, with an average AF between 0.0001 % and 0.0002 %. No obvious dependence of NINP on the number concentration of particles larger than 500 nm (N500) or black carbon (BC) mass concentration (mBC) is found throughout the field observation. The results indicate a substantial NINP increase during the dust event, although the observation took place at an urban site with high background aerosol concentration. Meanwhile, the presence of atmospheric BC from firework and traffic emissions, along with urban aerosols formed via secondary transformation during heavily polluted periods, does not influence the observed INP concentration. Our study corroborates previous laboratory and field findings that anthropogenic BC emission has a negligible effect on NINP and that NINP is unaffected by heavy pollution in the urban environment under mixed-phase cloud conditions.</p

    Condensation/immersion mode ice-nucleating particles in a boreal environment

    Get PDF
    Ice-nucleating particle (INP) measurements were performed in the boreal environment of southern Finland at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in the winter-spring of 2018. Measurements with the Portable Ice Nucleation Chamber (PINC) were conducted at 242 K and 105 % relative humidity with respect to water. The median INP number concentration [INP] during a 6-week measurement period was 13 L-1. The [INP] spanned 3 orders of magnitude and showed a general increase from mid-February until early April. No single dominant local or regional sources of INPs in the boreal environment of southern Finland could be identified. Rather, it is hypothesised that the INPs detected at SMEAR II are a result of long-range transport and dilution of INPs sourced far from the measurement site. Despite high variability, the measured [INP] values fall within the range expected for the [INP] measured elsewhere under similar thermodynamic conditions. The [INP] did not correlate with any of the examined parameters during the entire field campaign, indicating that no one single parameter can be used to predict the [INP] at the measurement location during the examined time period. The absence of a correlation across the entire field campaign also suggests that a variety of particles act as INPs at different times, although it was indirectly determined that ambient INPs are most likely within the size range of 0.1-0.5 mu m in diameter on average. On shorter timescales, several particle species correlated well with the [INP]. Depending on the meteorological conditions, black carbon (BC), supermicron biological particles and sub-0.1 mu m particles, most likely nanoscale biological fragments such as ice-nucleating macromolecules (INMs), correlated with the INP signal. However, an increase in the concentration of any of these particle species may not necessarily lead to the increase in the [INP]; the reasons for this remain unknown. Limitations of the instrumental set-up and the necessity for future field INP studies are addressed.Peer reviewe

    Links between atmospheric aerosols and sea state in the Arctic Ocean

    Get PDF
    Sea spray emission is the largest mass flux of aerosols to the atmosphere with important impact on atmospheric radiative transfer. However, large uncertainties still exit in constraining this mass flux and its climate forcing, in particular in the Arctic, where sea ice and relatively low wind speed in summer constitute a significantly different regime compared to the global ocean. Sea state conditions and marine boundary layer stability are also critical variables, but their contribution is often overlooked. Here we present concurrent observations of sea state using a novel stereo camera system, sea spray through coarse mode aerosols, and meteorological variables to determine boundary layer stability in the Barents and Kara Seas during the 2021 Arctic Century Expedition. Our findings reveal that aerosol concentrations were highest over open waters, closely correlating with wave height, followed by wind speed, wave steepness, and wave age. Notably, these correlations were stronger under unstable marine boundary layer conditions, reflecting immediate sea spray generation. By analysing various combinations of sea and atmospheric variables, we identified the wave height Reynolds number as the most effective indicator of atmospheric sea spray concentration, explaining 57% of its variability in unstable conditions. Our study underscores the need to consider sea state, wind, and boundary layer conditions together to accurately estimate atmospheric sea spray concentrations in the Arctic
    corecore