8 research outputs found
Technical Design Report for the: PANDA Micro Vertex Detector
This document illustrates the technical layout and the expected performance
of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect
charged particles as close as possible to the interaction zone. Design criteria
and the optimisation process as well as the technical solutions chosen are
discussed and the results of this process are subjected to extensive Monte
Carlo physics studies. The route towards realisation of the detector is
outlined.Comment: 189 pages, 225 figures, 41 table
2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole
International audienceConstraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season
2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole
International audienceConstraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season
Technical Design Report for the: PANDA Straw Tube Tracker
This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM-stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy-loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole \Panda scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described
Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (\u3c0N) TDAs from \uafpp \u2192 e+e 12\u3c00 reaction with the future PANDA detector at the FAIR facility. At high center- of-mass energy and high invariant mass squared of the lepton pair q2, the amplitude of the signal channel pp\uaf \u2192 e+e 12\u3c00 admits a QCD factorized description in terms of \u3c0N TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring \uafpp \u2192 e+e 12\u3c00 with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. pp\uaf \u2192 \u3c0+\u3c0 12\u3c00 were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 0.5 in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of 5 \ub7 107 (1 \ub7 107) at low (high) q2 for s = 5 GeV2, and of 1 \ub7 108 (6 \ub7 106) at low (high) q2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb 121 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with PANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing \u3c0N TDAs
Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker
<p>This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.</p>
Eperimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
We address the possibility of accessing nucleon-to-pion (πN) Transition Distribution Amplitudes (TDAs) from p¯p→e+e−π0 reaction with the future \={P}ANDA detector at the FAIR facility. At high center of mass energy and high invariant mass of the lepton pair q2, the amplitude of the signal channel p¯p→e+e−π0 admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring p¯p→e+e−π0 with the \={P}ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, {\it i.e.} p¯p→π+π−π0 were performed for the center of mass energy squared s=5 GeV2 and s=10 GeV2, in the kinematic regions 3.00.5 in the proton-antiproton center of mass frame. Results of the simulation show that the particle identification capabilities of the \={P}ANDA detector will allow to achieve a background rejection factor at the level of 108 (2⋅107) at low (high) q2 while keeping the signal reconstruction efficiency at around 40% and that a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb−1 of integrated luminosity. The future measurement of the signal channel cross section with \={P}ANDA will provide a new test of perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing πN TDAs