3,650 research outputs found

    Exploring Heart Rate Variability as a Biomedical Diagnostic Tool for the Disympathetic Dimension of Eight-Constitution Medicine

    Full text link
    BackgroundEight-Constitution Medicine (ECM), an extension of Traditional Korean Medicine, divides the population into eight groups based on their physiological characteristics. ECM divides these eight groups into two larger groups based on autonomic reactivity: the Sympathicotonic group and the Vagotonic group (herein referred to as the Disympathetic Dimension). Heart Rate Variability (HRV) is a widely used biomedical tool to assess cardiac autonomic function. This raises the question of the utility of using HRV to correctly diagnose ECM constitutions.MethodsA systematic literature review was conducted to evaluate the correlation between HRV and constitutions in Korean Constitutional Medicine, including Eight-Constitution Medicine (ECM) and Sasang Constitution Medicine (SCM). The articles were obtained from both English (Scopus, PubMed, EMBASE, ProQuest, and Medline) and Korean databases (NDSL and RISS), in addition to Google Scholar, without date restriction. 20 studies met the inclusion criteria, and data were extracted against three aspects: (1) correlation between HRV and constitution, (2) HRV reporting and interpretation, and (3) extraneous factors that were controlled in the studies.Results386 articles were initially identified, which was reduced to n = 20 studies which met the inclusion criteria. Of these, 19 were SCM studies and 1 was an ECM study. Sample sizes varied from 10 to 8498 men and women, with an age range of 10-80 years. SCM studies explored HRV differences by constitution, measuring HRV at resting, with controlled breathing, before and after acupuncture stimulation, and by other interventions. SCM studies reported either no significant differences (HRV at resting or with controlled breathing studies) or conflicting data (HRV with acupuncture stimulation studies). The single ECM study measured HRV at resting and after acupuncture stimulation but reported no significant differences between the two groups of Sympathicotonia and Vagotonia.ConclusionsDue to inconsistencies in study design, study population, and measures of HRV, there was no consistency in the data to support the use of HRV as a biomedical determinant of ECM constitutions

    Flexible, highly efficient all-polymer solar cells

    Get PDF
    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C-61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.11262212Ysciescopu

    Post-Stenotic Recirculating Flow May Cause Hemodynamic Perforator Infarction

    Get PDF
    Background and Purpose The primary mechanism underlying paramedian pontine infarction (PPI) is atheroma obliterating the perforators. Here, we encountered a patient with PPI in the post-stenotic area of basilar artery (BA) without a plaque, shown, by high-resolution magnetic resonance imaging (HR-MRI). We performed an experiment using a 3D-printed BA model and a particle image velocimetry (PIV) to explore the hemodynamic property of the post-stenotic area and the mechanism of PPI. Methods 3D-model of a BA stenosis was reconstructed with silicone compound using a 3D printer based on the source image of HR-MRI. Working fluid seeded with fluorescence particles was used and the velocity of those particles was measured horizontally and vertically. Furthermore, microtubules were inserted into the posterior aspect of the model to measure the flow rates of perforators (pre- and post-stenotic areas). The flow rates were compared between the microtubules. Results A recirculating flow was observed from the post-stenotic area in both directions forming a spiral shape. The velocity of the flow in these regions of recirculation was about one-tenth that of the flow in other regions. The location of recirculating flow well corresponded with the area with low-signal intensity at the time-of-flight magnetic resonance angiography and the location of PPI. Finally, the flow rate through the microtubule inserted into the post-stenotic area was significantly decreased comparing to others (P<0.001). Conclusions Perforator infarction may be caused by a hemodynamic mechanism altered by stenosis that induces a recirculation flow. 3D-printed modeling and PIV are helpful understanding the hemodynamics of intracranial stenosis.114Ysciescopu

    Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017

    Get PDF
    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics.published_or_final_versio

    Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015

    Get PDF
    Zoonotic infections by avian influenza viruses occur at the human-poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls.published_or_final_versio

    Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: Several acute illness severity scores have been proposed for evaluating patients on admission to intensive care units but these have not been compared for patients with nosocomial bloodstream infection (nBSI). We compared three severity of illness scoring systems for predicting mortality in patients with nBSI due to Pseudomonas aeruginosa. METHODS: We performed a historical cohort study on 63 adults in intensive care units with P. aeruginosa monomicrobial nBSI. RESULTS: The Acute Physiology, Age, Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and Simplified Acute Physiologic Score (SAPS II), were calculated daily from 2 days prior through 2 days after the first positive blood culture. Calculation of the area under the receiver operating characteristic (ROC) curve confirmed that APACHE II and SAPS II at day -1 and SOFA at day +1 were better predictors of outcome than days -2, 0 and day 2 of BSI. By stepwise logistic regression analysis of these three scoring systems, SAPS II (OR: 13.03, CI95% 2.51–70.49) and APACHE II (OR: 12.51, CI95% 3.12–50.09) on day -1 were the best predictors for mortality. CONCLUSION: SAPS II and APACHE II are more accurate than the SOFA score for predicting mortality in this group of patients at day -1 of BSI

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer

    Get PDF
    Plasmon-enhanced optical trapping is being actively studied to provide efficient manipulation of nanometre-sized objects. However, a long-standing issue with previously proposed solutions is how to controllably load the trap on-demand without relying on Brownian diffusion. Here, we show that the photo-induced heating of a nanoantenna in conjunction with an applied a.c. electric field can initiate rapid microscale fluid motion and particle transport with a velocity exceeding 10 μm s -1 , which is over two orders of magnitude faster than previously predicted. Our electrothermoplasmonic device enables on-demand long-range and rapid delivery of single nano-objects to specific plasmonic nanoantennas, where they can be trapped and even locked in place. We also present a physical model that elucidates the role of both heat-induced fluidic motion and plasmonic field enhancement in the plasmon-assisted optical trapping process. Finally, by applying a d.c. field or low-frequency a.c. field (below 10 Hz) while the particle is held in the trap by the gradient force, the trapped nano-objects can be immobilized into plasmonic hotspots, thereby providing the potential for effective low-power nanomanufacturing on-chip
    corecore