337 research outputs found
Discovery From Non-Parties (Third-Party Discovery) in International Arbitration
International arbitration rules and many arbitration laws usually provide procedures that permit tribunals to order parties to disclose documents and other materials to the other parties.1 More complex are the rules that determine opportunities to obtain discovery from persons that are not party to the arbitration (third-party discovery). This article will review third-party discovery under the Federal Arbitration Act (FAA) and the provisions of the US Code s.1782 that authorise US courts to act in aid of actions before foreign tribunals. Section 1782 has unique interest at this time because it figured prominently in the EU antitrust investigation of Intel that was initiated on request from Advanced Micro Devices (AMD). Early in that investigation, AMD filed a s.1782 request in the US District Court to obtain evidence from US sources for submission to the DG-Competition of the European Commission (EC). This request ultimately led to the Supreme Court’s decision in Intel Corp v Advanced Micro Devices Inc2 which appeared to significantly expand the scope of s.1782. Ironically, after AMD won on key legal issues in the Supreme Court, the District Court on remand exercised its discretion and denied the request for judicial assistance. This paper first describes the FAA non-party discovery rules and the split among the federal appellate courts concerning the authority of arbitrators to order prehearing discovery from non-parties. Next, it provides an analysis of the meaning of the terms “interested party” and “tribunal”—terms that were controversially interpreted by the Supreme Court in Intel and are essential to the application of s.1782. Finally, it discusses the “discretionary” factors used by the federal courts in deciding whether to grant a s.1782 request even when the statutory criteria are met. The opportunity to exercise this discretion seems to rebut the argument that the Supreme Court’s interpretation of s.1782 gives participants before foreign tribunals more discovery rights in the United States than are available to the parties in arbitrations covered by the FAA
Combustion Synthesis of Large Bulk Nanostructured Ni 65
A large bulk nanostructured Ni65Al21Cr14 alloy with dimensions of Φ 100 mm × 6 mm was produced by combustion synthesis technique followed with rapid solidification. The Ni65Al21Cr14 alloy was composed of γ′-Ni3Al/γ-Ni(Al, Cr) eutectic matrix and γ-Ni(Al, Cr) dendrite. The eutectic matrix consisted of 80–150 nm cuboidal γ′-Ni3Al and 2–5 nm γ-Ni(Al, Cr) boundary. The dentrite was comprised of high-density growth twins with about 3–20 nm in width. The nanostructured Ni65Al21Cr14 alloy exhibited simultaneously high fracture strength of 2200 MPa and good ductility of 26% in compression test
Bidding for Highly Available Services with Low Price in Spot Instance Market
ABSTRACT Amazon EC2 has built the Spot Instance Marketplace and offers a new type of virtual machine instances called as spot instances. These instances are less expensive but considered failure-prone. Despite the underlying hardware status, if the bidding price is lower than the market price, such an instance will be terminated. Distributed systems can be built from the spot instances to reduce the cost while still tolerating instance failures. For example, embarrassingly parallel jobs can use the spot instances by re-executing failed tasks. The bidding framework for such jobs simply selects the spot price as the bid. However, highly available services like lock service or storage service cannot use the similar techniques for availability consideration. The spot instance failure model is different to that of normal instances (fixed failure probability in traditional distributed model). This makes the bidding strategy more complex to keep service availability for such systems. We formalize this problem and propose an availability and cost aware bidding framework. Experiment results show that our bidding framework can reduce the costs of a distributed lock service and a distributed storage service by 81.23% and 85.32% respectively while still keeping availability level the same as it is by using on-demand instances
Electric Field Measurement by Edge Transient Current Technique on Silicon Low Gain Avalanche Detector
A novel methodology, named the diffusion profile method, is proposed in this
research to measure the electric field of a low gain avalanche detector
(LGAD).The proposed methodology utilizes the maximum of the time derivative of
the edge transient current technique (edge-TCT) test waveform to quantify the
dispersion of the light-induced carriers. This method introduces the estimation
of the elongation of the carrier cluster caused by diffusion and the divergence
of the electric field force during its drift along the detector. The
effectiveness of the diffusion profile method is demonstrated through the
analysis of both simulated and measured edge-TCT waveforms. Experimental data
was collected from a laser scan performed on an LGAD detector along its
thickness direction.A simulation procedure has been developed in RASER
(RAdiation SEmiconductoR) to generate signals from LGAD.An assumption of
immediate one-step carrier multiplication is introduced to simplify the
avalanche process.Simulation results were compared with transient current data
at the waveform level and showed a favorable match. Both simulation and
experimental results have shown that the diffusion profile method could be
applied to certain edge-TCT facilities as an alternative of electric field
measurement
The Applications of Finite Element Analysis in Proximal Humeral Fractures
Proximal humeral fractures are common and most challenging, due to the complexity of the glenohumeral joint, especially in the geriatric population with impacted fractures, that the development of implants continues because currently the problems with their fixation are not solved. Pre-, intra-, and postoperative assessments are crucial in management of those patients. Finite element analysis, as one of the valuable tools, has been implemented as an effective and noninvasive method to analyze proximal humeral fractures, providing solid evidence for management of troublesome patients. However, no review article about the applications and effects of finite element analysis in assessing proximal humeral fractures has been reported yet. This review article summarized the applications, contribution, and clinical significance of finite element analysis in assessing proximal humeral fractures. Furthermore, the limitations of finite element analysis, the difficulties of more realistic simulation, and the validation and also the creation of validated FE models were discussed. We concluded that although some advancements in proximal humeral fractures researches have been made by using finite element analysis, utility of this powerful tool for routine clinical management and adequate simulation requires more state-of-the-art studies to provide evidence and bases
Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase
Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ) load and to modify the progression of Alzheimer’s disease (AD). However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1) level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg) mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration
Structural brain assessment of temporal lobe epilepsy based on voxel-based and surface-based morphological features
Aim of the study. This study aimed to assess the cerebral voxel-based and surface-based morphological abnormalities of patients with temporal lobe epilepsy (TLE).Materials and methods. A total of 100 healthy adults and 73 patients with TLE were enrolled in this study, and their 3D T1-weighted MRI data were collected. Voxel-based morphology (VBM) and surface-based morphology (SBM) tools were used to compare the morphological differences between healthy adults and patients with TLE. Receiver-operating characteristic (ROC) curves were used to acquire the boundary values for detecting morphological abnormalities in regions of interest from the corrected VBM and SBM analysis.Results. Our results showed that cortical voxels and decreased thickness areas were located in the widespread cortex and subcortical structures in the TLE group. However, after completing the analysis, we found that the left-TLE lesions were limited to the left temporal pole and left hippocampus, while the right-TLE lesions were located in the bilateral medial temporal lobe, including the right hippocampus and bilateral amygdala. ROC-curve results showed that the volume of the left hippocampus at 4,124.45 mm3 and the thickness of the left temporal pole cortex at 3.50 mm could be used as optimal boundary values based on the curves of the left-TLE group. The right-TLE group curves were poor.Conclusions. Widespread cerebral morphological TLE abnormalities were represented in this study. However, the lesions may be limited after completing a corrected comparison with clinical information. Boundary values of left-TLE group lesions were also obtained
Integrative analysis of grapevine (Vitis vinifera L) transcriptome reveals regulatory network for Chardonnay quality formation
Anthocyanins, total phenols, soluble sugar and fruit shape plays a significant role in determining the distinct fruit quality and customer preference. However, for the majority of fruit species, little is known about the transcriptomics and underlying regulatory networks that control the generation of overall quality during fruit growth and ripening. This study incorporated the quality-related transcriptome data from 6 ecological zones across 3 fruit development and maturity phases of Chardonnay cultivars. With the help of this dataset, we were able to build a complex regulatory network that may be used to identify important structural genes and transcription factors that control the anthocyanins, total phenols, soluble sugars and fruit shape in grapes. Overall, our findings set the groundwork to improve grape quality in addition to offering novel views on quality control during grape development and ripening
Metatranscriptomic analysis revealed Prevotella as a potential biomarker of oropharyngeal microbiomes in SARS-CoV-2 infection
Background and objectivesDisease severity and prognosis of coronavirus disease 2019 (COVID-19) disease with other viral infections can be affected by the oropharyngeal microbiome. However, limited research had been carried out to uncover how these diseases are differentially affected by the oropharyngeal microbiome of the patient. Here, we aimed to explore the characteristics of the oropharyngeal microbiota of COVID-19 patients and compare them with those of patients with similar symptoms.MethodsCOVID-19 was diagnosed in patients through the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Characterization of the oropharyngeal microbiome was performed by metatranscriptomic sequencing analyses of oropharyngeal swab specimens from 144 COVID-19 patients, 100 patients infected with other viruses, and 40 healthy volunteers.ResultsThe oropharyngeal microbiome diversity in patients with SARS-CoV-2 infection was different from that of patients with other infections. Prevotella and Aspergillus could play a role in the differentiation between patients with SARS-CoV-2 infection and patients with other infections. Prevotella could also influence the prognosis of COVID-19 through a mechanism that potentially involved the sphingolipid metabolism regulation pathway.ConclusionThe oropharyngeal microbiome characterization was different between SARS-CoV-2 infection and infections caused by other viruses. Prevotella could act as a biomarker for COVID-19 diagnosis and of host immune response evaluation in SARS-CoV-2 infection. In addition, the cross-talk among Prevotella, SARS-CoV-2, and sphingolipid metabolism pathways could provide a basis for the precise diagnosis, prevention, control, and treatment of COVID-19
A Molecular Design Approach Towards Elastic and Multifunctional Polymer Electronics
Next-generation wearable electronics require enhanced mechanical robustness and device complexity. Besides previously reported softness and stretchability, desired merits for practical use include elasticity, solvent resistance, facile patternability and high charge carrier mobility. Here, we show a molecular design concept that simultaneously achieves all these targeted properties in both polymeric semiconductors and dielectrics, without compromising electrical performance. This is enabled by covalently-embedded in-situ rubber matrix (iRUM) formation through good mixing of iRUM precursors with polymer electronic materials, and finely-controlled composite film morphology built on azide crosslinking chemistry which leverages different reactivities with C–H and C=C bonds. The high covalent crosslinking density results in both superior elasticity and solvent resistance. When applied in stretchable transistors, the iRUM-semiconductor film retained its mobility after stretching to 100% strain, and exhibited record-high mobility retention of 1 cm2 V−1 s−1 after 1000 stretching-releasing cycles at 50% strain. The cycling life was stably extended to 5000 cycles, five times longer than all reported semiconductors. Furthermore, we fabricated elastic transistors via consecutively photo-patterning of the dielectric and semiconducting layers, demonstrating the potential of solution-processed multilayer device manufacturing. The iRUM represents a molecule-level design approach towards robust skin-inspired electronics
- …