75,754 research outputs found
Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors
Nematic order resulting from the partial melting of density-waves has been
proposed as the mechanism to explain nematicity in iron-based superconductors.
An outstanding question, however, is whether the microscopic electronic model
for these systems -- the multi-orbital Hubbard model -- displays such an
ordered state as its leading instability. In contrast to usual electronic
instabilities, such as magnetic and charge order, this fluctuation-driven
phenomenon cannot be captured by the standard RPA method. Here, by including
fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its
nematic susceptibility and contrast it with its ferro-orbital order
susceptibility, showing that its leading instability is the spin-driven nematic
phase. Our results also demonstrate the primary role played by the
orbital in driving the nematic transition, and reveal that high-energy magnetic
fluctuations are essential to stabilize nematic order in the absence of
magnetic order.Comment: 8 pages, 6 figure
Intertwined spin-orbital coupled orders in the iron-based superconductors
The underdoped phase diagram of the iron-based superconductors exemplifies
the complexity common to many correlated materials. Indeed, multiple ordered
states that break different symmetries but display comparable transition
temperatures are present. Here, we argue that such a complexity can be
understood within a simple unifying framework. This framework, built to respect
the symmetries of the non-symmorphic space group of the FeAs/Se layer, consists
of primary magnetically-ordered states and their vestigial phases that
intertwine spin and orbital degrees of freedom. All vestigial phases have
Ising-like and zero wave-vector order parameters, described in terms of
composite spin order and exotic orbital-order patterns such as spin-orbital
loop-currents, staggered atomic spin-orbit coupling, and emergent Rashba- and
Dresselhaus-type spin-orbit interactions. Moreover, they host unusual
phenomena, such as the electro-nematic effect, by which electric fields acts as
transverse fields to the nematic order parameter, and the ferro-N\'eel effect,
by which a uniform magnetic field induces N\'eel order. We discuss the
experimental implications of our findings to iron-based superconductors and
possible extensions to other correlated compounds with similar space groups.Comment: 19 pages, 7 figure
Electronic and Magnetic Properties of 1T-TiSe2 Nanoribbons
Motivated by the recent synthesis of single layer TiSe2 , we used
state-of-the-art density functional theory calculations, to investigate the
structural and electronic properties of zigzag and armchair- edged nanoribbons
of this material. Our analysis reveals that, differing from ribbons of other
ultra-thin materials such as graphene, TiSe2 nanoribbons have some distinctive
properties. The electronic band gap of the nanoribbons decreases exponentially
with the width and vanishes for ribbons wider than 20 Angstroms. For
ultranarrow zigzag-edged nanoribbons we find odd-even oscillations in the band
gap width, although their band structures show similar features. Moreover, our
detailed magnetic-ground-state analysis reveals that zigzag and armchair edged
ribbons have nonmagnetic ground states. Passivating the dangling bonds with
hydrogen at the edges of the structures influences the band dispersion. Our
results shed light on the characteristic properties of T phase nanoribbons of
similar crystal structures.Comment: 8 pages, 9 figures, accepted paper on IOP 2D Material
Weakly coupled quantum spin singlets in BaCrO
Using single crystal inelastic neutron scattering with and without
application of an external magnetic field and powder neutron diffraction, we
have characterized magnetic interactions in BaCrO. Even without
field, we found that there exist three singlet-to-triplet excitation modes in
scattering plane. Our complete analysis shows that the three modes
are due to spatially anisotropic interdimer interactions that are induced by
local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller
active Cr. The strong intradimer coupling of meV
and weak interdimer interactions ( meV) makes
BaCrO a good model system for weakly-coupled quantum spin
dimers
Recommended from our members
Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes.
Mice lacking the interleukin 7 receptor (IL-7R) generate alpha/beta T cells at a detectable but greatly reduced rate, but gamma/delta T cells are completely absent. The special role of IL-7R signaling in gamma/delta T cell development has remained unclear. IL-7Ralpha(-/-) mice exhibit a paucity of gamma gene rearrangements. This striking observation can be explained by a defect in T cell receptor (TCR)-gamma gene rearrangement, a defect in TCR-gamma gene transcription leading to death of gamma/delta lineage cells, and/or a requirement for IL-7R in commitment of cells to the gamma/delta lineage. To determine the role of IL-7R signaling in gamma/delta T cell development, we examined transcription of a prerearranged TCR-gamma transgene in IL-7Ralpha(-/-) mice, as well as the effects of IL-7 on transcription of endogenous, rearranged TCR-gamma genes in alpha/beta lineage cells. The results demonstrate that IL-7R-mediated signals are necessary for the normal expression of rearranged TCR-gamma genes. Equally significant, the results show that the poor expression of TCR-gamma genes in IL-7Ralpha(-/-) mice is responsible for the selective deficit in gamma/delta cells in these mice, since a high copy TCR-gamma transgene exhibited sufficient residual expression in IL-7Ralpha(-/-) mice to drive gamma/delta cell development. The results indicate that the absence of gamma/delta T cells in IL-7Ralpha(-/-) mice is due to insufficient TCR-gamma gene expression
Characterization of a novel reassortant H5N6 highly pathogenic avian influenza virus clade 2.3.4.4 in Korea, 2017
- …
