351 research outputs found
Hybrid turbidite-drift channel complexes: An integrated multiscale model
The interaction of deep-marine bottom currents with episodic, unsteady sediment gravity flows affects global sediment transport, forms climate archives, and controls the evolution of continental slopes. Despite their importance, contradictory hypotheses for reconstructing past flow regimes have arisen from a paucity of studies and the lack of direct monitoring of such hybrid systems. Here, we address this controversy by analyzing deposits, high-resolution seafloor data, and near-bed current measurements from two sites where eastward-flowing gravity flows interact(ed) with northward-flowing bottom currents. Extensive seismic and core data from offshore Tanzania reveal a 1650-m-thick asymmetric hybrid channel levee-drift system, deposited over a period of ∼20 m.y. (Upper Cretaceous to Paleocene). High-resolution modern seafloor data from offshore Mozambique reveal similar asymmetric channel geometries, which are related to northward-flowing near-bed currents with measured velocities of up to 1.4 m/s. Higher sediment accumulation occurs on the downstream flank of channel margins (with respect to bottom currents), with inhibited deposition or scouring on the upstream flank (where velocities are highest). Toes of the drift deposits, consisting of thick laminated muddy siltstone, which progressively step back into the channel axis over time, result in an interfingering relationship with the sandstone-dominated channel fill. Bottom-current flow directions contrast with those of previous models, which lacked direct current measurements or paleoflow indicators. We finally show how large-scale depositional architecture is built through the temporally variable coupling of these two globally important sediment transport processes. Our findings enable more-robust reconstructions of past oceanic circulation and diagnosis of ancient hybrid turbidite-drift systems
Providing information for young people in sexual health clinics: getting it right
Background. The need to improve the quality and availability of information on sexual health is identified as a key element in achieving the aims set out in the National Strategy for Sexual Health and HIV. Providing information about sexual health to young people poses particular challenges because of the sensitive nature of the issues and because of the difficulties that young people may face in sourcing information and asking questions of professionals.
Objective. To explore the views of young people attending
sexual health services on several aspects of service
delivery, including provision of information.
Method. Twenty-five in-depth qualitative interviews were
conducted with a purposive sample of young people
attending a range of different outlets for sexual health care.
Results. This research revealed important information
about the ways in which the type, format, tone and design
of health promotion materials and the methods used to
impart information to young people has a strong impact on
client satisfaction during visits to sexual health services.
Conclusions. Young people vary greatly in their needs for
sexual health information in terms of level, extent and
manner of provision. Passive acceptance of information
should not be taken to indicate tacit satisfaction with level and complexity. Written information needs to be used in conjunction with face-to-face discussion. Effective
provision of sexual health information impacts notably on
client satisfaction. Pitched at the right level, sexual health information has considerable potential to enhance sexual health status
New Upper Limits on the Tau Neutrino Mass from Primordial Helium Considerations
In this paper we reconsider recently derived bounds on tau neutrinos,
taking into account previously unaccounted for effects. We find that, assuming
that the neutrino life-time is longer than , the constraint
rules out masses in the range
for Majorana neutrinos and
for Dirac neutrinos. Given that the present
laboratory bound is 35 MeV, our results lower the present bound to and
for Majorana and Dirac neutrinos respectively.Comment: 9 pages (2 figures available upon request), UM-AC-93-0
Van Hove Singularities in disordered multichannel quantum wires and nanotubes
We present a theory for the van Hove singularity (VHS) in the tunneling
density of states (TDOS) of disordered multichannel quantum wires, in
particular multi-wall carbon nanotubes. We assume close-by gates which screen
off electron-electron interactions. Diagrammatic perturbation theory within a
non-crossing approximation yields analytical expressions governing the
disorder-induced broadening and shift of VHS's as new subbands are opened. This
problem is nontrivial because the (lowest-order) Born approximation breaks down
close to the VHS. Interestingly, compared to the bulk case, the boundary TDOS
shows drastically altered VHS, even in the clean limit.Comment: 4 pages, 2 figures, accepted with revisions in PR
New Source of CP violation in B physics ?
In this talk we discuss how the down type left-right squark mixing in
Supersymmetry can induce a new source of CP violation in the time dependent
asymmtries in B --> phi K process. We use QCD improved factorization process to
calculate the hadronic matrix element for the process and find the allowed
parameter space for and , the magnitude and phase of the down
type LR(RL) squark mixing parameter . In the same allowed
regin we calculate the expected CP asymmtries in the
process.Comment: 16 pages, Latex, 2 postscript figures, invited talk presented by N.G.
Deshpande at the 9th Adriatic meeting, Dubrovnik, Croatia, 4-14 September,
2003. With updated reference
Interacting one dimensional electron gas with open boundaries
We discuss the properties of interacting electrons on a finite chain with
open boundary conditions. We extend the Haldane Luttinger liquid description to
these systems and study how the presence of the boundaries modifies various
correlation functions. In view of possible experimental applications to quantum
wires, we analyse how tunneling measurements can reveal the underlying
Luttinger liquid properties. The two terminal conductance is calculated. We
also point out possible applications to quasi one dimensional materials and
study the effects of magnetic impurities.Comment: 38 pages, ReVTeX, 7 figures (available upon request
Quantum Monte Carlo simulation for the conductance of one-dimensional quantum spin systems
Recently, the stochastic series expansion (SSE) has been proposed as a
powerful MC-method, which allows simulations at low for quantum-spin
systems. We show that the SSE allows to compute the magnetic conductance for
various one-dimensional spin systems without further approximations. We
consider various modifications of the anisotropic Heisenberg chain. We recover
the Kane-Fisher scaling for one impurity in a Luttinger-liquid and study the
influence of non-interacting leads for the conductance of an interacting
system.Comment: 8 pages, 9 figure
Dynamical fidelity of a solid-state quantum computation
In this paper we analyze the dynamics in a spin-model of quantum computer.
Main attention is paid to the dynamical fidelity (associated with dynamical
errors) of an algorithm that allows to create an entangled state for remote
qubits. We show that in the regime of selective resonant excitations of qubits
there is no any danger of quantum chaos. Moreover, in this regime a modified
perturbation theory gives an adequate description of the dynamics of the
system. Our approach allows to explicitly describe all peculiarities of the
evolution of the system under time-dependent pulses corresponding to a quantum
protocol. Specifically, we analyze, both analytically and numerically, how the
fidelity decreases in dependence on the model parameters.Comment: 9 pages, 6 figures, submitted to PR
Fast Non-Adiabatic Two Qubit Gates for the Kane Quantum Computer
In this paper we apply the canonical decomposition of two qubit unitaries to
find pulse schemes to control the proposed Kane quantum computer. We explicitly
find pulse sequences for the CNOT, swap, square root of swap and controlled Z
rotations. We analyze the speed and fidelity of these gates, both of which
compare favorably to existing schemes. The pulse sequences presented in this
paper are theoretically faster, higher fidelity, and simpler than existing
schemes. Any two qubit gate may be easily found and implemented using similar
pulse sequences. Numerical simulation is used to verify the accuracy of each
pulse scheme
Enhancement of pair correlation in a one-dimensional hybridization model
We propose an integrable model of one-dimensional (1D) interacting electrons
coupled with the local orbitals arrayed periodically in the chain. Since the
local orbitals are introduced in a way that double occupation is forbidden, the
model keeps the main feature of the periodic Anderson model with an interacting
host. For the attractive interaction, it is found that the local orbitals
enhance the effective mass of the Cooper-pair-like singlets and also the pair
correlation in the ground state. However, the persistent current is depressed
in this case. For the repulsive interaction case, the Hamiltonian is
non-Hermitian but allows Cooper pair solutions with small momenta, which are
induced by the hybridization between the extended state and the local orbitals.Comment: 11 page revtex, no figur
- …