3,681 research outputs found

    InN dielectric function from the midinfrared to the visible range

    Full text link
    The dispersion of the dielectric function for wurtzite InN is analytically evaluated in the region near the fundamental energy gap. The real part of the dielectric function has a logarithmic singularity at the absorption edge. This results in the large contribution into the optical dielectric constant. For samples with degenerate carriers, the real part of the dielectric function is divergent at the absorption edge. The divergence is smeared with temperatures or relaxation rate. The imaginary part of the dielectric function has a plateau far away from the absorption onset.Comment: 5 pages, 2 figure

    What Does Certification Tell Us About Teacher Effectiveness? Evidence from New York City

    Get PDF
    We use six years of data on student test performance to evaluate the effectiveness of certified, uncertified, and alternatively certified teachers in the New York City public schools. On average, the certification status of a teacher has at most small impacts on student test performance. However, among those with the same certification status, there are large and persistent differences in teacher effectiveness. This evidence suggests that classroom performance during the first two years, rather than certification status, is a more reliable indicator of a teacher's future effectiveness. We also evaluate turnover among teachers with different certification status, and the impact on student achievement of hiring teachers with predictably high turnover. Given relatively modest estimates of experience differentials, even high turnover groups (such as Teach for America participants) would have to be only slightly more effective in their first year to offset the negative effects of their high exit rates.

    Electromagnetic field induced suppression of transport through nn-pp junctions in graphene

    Full text link
    We study quasi-particle transmission through an nn -pp junction in a graphene irradiated by an electromagnetic field (EF). In the absence of EF the electronic spectrum of undoped graphene is gapless, and one may expect the perfect transmission of quasi-particles flowing perpendicular to the junction. We demonstrate that the resonant interaction of propagating quasi-particles with the component of EF parallel to the junction induces a \textit{non-equilibrium dynamic gap} (2ΔR)(2\Delta_R) between electron and hole bands in the quasi-particle spectrum of graphene. In this case the strongly suppressed quasi-particle transmission is only possible due to interband tunnelling. The effect may be used for controlling transport properties of diverse structures in graphene, like, e.g., nn-pp-nn transistors, single electron transistors, quantum dots, etc., by variation of the intensity SS and frequency ω\omega of the external radiation.Comment: 5 pages, 3 figure

    Nonlinear screening and ballistic transport in a graphene p-n junction

    Full text link
    We study the charge density distribution, the electric field profile, and the resistance of an electrostatically created lateral p-n junction in graphene. We show that the electric field at the interface of the electron and hole regions is strongly enhanced due to limited screening capacity of Dirac quasiparticles. Accordingly, the junction resistance is lower than estimated in previous literature.Comment: 4 pages, 2 figures. (v1) Original version (v2) Introduction largely rewritten, minor typos fixed throughou

    Choosing a basis that eliminates spurious solutions in k.p theory

    Full text link
    A small change of basis in k.p theory yields a Kane-like Hamiltonian for the conduction and valence bands of narrow-gap semiconductors that has no spurious solutions, yet provides an accurate fit to all effective masses. The theory is shown to work in superlattices by direct comparison with first-principles density-functional calculations of the valence subband structure. A reinterpretation of the standard data-fitting procedures used in k.p theory is also proposed.Comment: 15 pages, 2 figures; v3: expanded with much new materia

    Tunable quantum spin Hall effect in double quantum wells

    Full text link
    The field of topological insulators (TIs) is rapidly growing. Concerning possible applications, the search for materials with an easily controllable TI phase is a key issue. The quantum spin Hall effect, characterized by a single pair of helical edge modes protected by time-reversal symmetry, has been demonstrated in HgTe-based quantum wells (QWs) with an inverted bandgap. We analyze the topological properties of a generically coupled HgTe-based double QW (DQW) and show how in such a system a TI phase can be driven by an inter-layer bias voltage, even when the individual layers are non-inverted. We argue, that this system allows for similar (layer-)pseudospin based physics as in bilayer graphene but with the crucial absence of a valley degeneracy.Comment: 9 pages, 8 figures, extended version (accepted Phys. Rev. B

    Optimal rotations of deformable bodies and orbits in magnetic fields

    Full text link
    Deformations can induce rotation with zero angular momentum where dissipation is a natural ``cost function''. This gives rise to an optimization problem of finding the most effective rotation with zero angular momentum. For certain plastic and viscous media in two dimensions the optimal path is the orbit of a charged particle on a surface of constant negative curvature with magnetic field whose total flux is half a quantum unit.Comment: 4 pages revtex, 4 figures + animation in multiframe GIF forma

    Josephson Current and Noise at a Superconductor-Quantum Spin Hall Insulator-Superconductor Junction

    Get PDF
    We study junctions between superconductors mediated by the edge states of a quantum spin Hall insulator. We show that such junctions exhibit a fractional Josephson effect, in which the current phase relation has a 4\pi, rather than a 2\pi periodicity. This effect is a consequence of the conservation of fermion parity - the number of electrons modulo 2 - in a superconducting junction, and is closely related to the Z_2 topological structure of the quantum spin Hall insulator. Inelastic processes, which violate the conservation of fermion parity, lead to telegraph noise in the equilibrium supercurrent. We predict that the low frequency noise due these processes diverges exponentially with temperature T as T -> 0. Possible experiments on HgCdTe quantum wells will be discussed.Comment: 4 pages, 2 figure

    Gate-Controlled Electron Spin Resonance in a GaAs/AlGaAs Heterostructure

    Full text link
    The electron spin resonance (ESR) of two-dimensional electrons is investigated in a gated GaAs/AlGaAs heterostructure. We found that the ESR resonance frequency can be turned by means of a gate voltage. The front and back gates of the heterostructure produce opposite g-factor shift, suggesting that electron g-factor is being electrostatically controlled by shifting the equilibrium position of the electron wave function from one epitaxial layer to another with different g-factors
    • …
    corecore