13,040 research outputs found

    KOI-1003: A new spotted, eclipsing RS CVn binary in the Kepler field

    Full text link
    Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star---the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system's primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system's orbital and rotation periods indicates the orbit and primary star's rotation are nearly synchronized (Porb=8.360613±0.000003P_\mathrm{orb} = 8.360613\pm0.000003 days; Prot∼8.23P_\mathrm{rot} \sim 8.23 days). By assuming the secondary star is on the main sequence, we suggest the system consists of a 1.45−0.19+0.11 M⊙1.45^{+0.11}_{-0.19} \ M_\odot subgiant primary and a 0.59−0.04+0.03 M⊙0.59^{+0.03}_{-0.04} \ M_\odot main-sequence companion. Our work gives a distance of 4400±6004400 \pm 600 pc and an age of t=3.0+2.0−0.5t = 3.0^{-0.5}_{+2.0} Gyr, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.Comment: 21 pages, 19 figures, accepted to Ap

    When is an alternative possibility robust?

    Get PDF
    According to some, free will requires alternative possibilities. But not any old alternative possibility will do. Sometimes, being able to bring about an alternative does not bestow any control on an agent. In order to bestow control, and so be directly relevant qua alternative to grounding the agent's moral responsibility, alternatives need to be robust. Here, I investigate the nature of robust alternatives. I argue that Derk Pereboom's latest robustness criterion is too strong, and I suggest a different criterion based on the idea that what agents need to be able to do is keep open the possibility of securing their blamelessness, rather than needing to directly ensure their own blamelessness at the time of decision

    Spin Relaxation in a Quantum Dot due to Nyquist Noise

    Full text link
    We calculate electron and nuclear spin relaxation rates in a quantum dot due to the combined action of Nyquist noise and electron-nuclei hyperfine or spin-orbit interactions. The relaxation rate is linear in the resistance of the gate circuit and, in the case of spin-orbit interaction, it depends essentially on the orientations of both the static magnetic field and the fluctuating electric field, as well as on the ratio between Rashba and Dresselhaus interaction constants. We provide numerical estimates of the relaxation rate for typical system parameters, compare our results with other, previously discussed mechanisms, and show that the Nyquist mechanism can have an appreciable effect for experimentally relevant systems.Comment: v2: New discussion of arbitrary gate setups (1 new figure), more Comments on experiments; 6 pages, 4 figure

    Gate-Controlled Electron Spin Resonance in a GaAs/AlGaAs Heterostructure

    Full text link
    The electron spin resonance (ESR) of two-dimensional electrons is investigated in a gated GaAs/AlGaAs heterostructure. We found that the ESR resonance frequency can be turned by means of a gate voltage. The front and back gates of the heterostructure produce opposite g-factor shift, suggesting that electron g-factor is being electrostatically controlled by shifting the equilibrium position of the electron wave function from one epitaxial layer to another with different g-factors

    Is there a renormalization of the 1D conductance in Luttinger Liquid model?

    Full text link
    Properties of 1D transport strongly depend on the proper choice of boundary conditions. It has been frequently stated that the Luttinger Liquid (LL) conductance is renormalized by the interaction as ge2hg \frac{e^2} {h} . To contest this result I develop a model of 1D LL wire with the interaction switching off at the infinities. Its solution shows that there is no renormalization of the universal conductance while the electrons have a free behavior in the source and drain reservoirs.Comment: 5 pages, RevTex 2.0, attempted repair of tex error

    High-Field Electrical Transport in Single-Wall Carbon Nanotubes

    Full text link
    Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10^9 A/cm^2. As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.Comment: 4 pages, 3 eps figure

    Transport in an inhomogeneous interacting one--dimensional system

    Full text link
    Transport through a one--dimensional wire of interacting electrons connected to semi--infinite leads is investigated using a bosonization approach. An incident electron is transmitted as a sequence of partial charges. The dc conductance is found to be entirely determined by the properties of the leads. The dynamic nonlocal conductivity is rigorously expressed in terms of the transmission. For abrupt variations of the interaction parameters at the junctions the central wire acts as a Fabry--Perot resonator. When one of the connected wires has a tendency towards superconducting order, partial Andreev reflection of an incident electron occurs.Comment: 11 pages, RevTeX 3.0, 1 postscript figure, everything in a uuencoded fil

    Multiple-quasiparticle agglomerates at \nu=2/5

    Full text link
    We investigate the dynamics of quasiparticle agglomerates in edge states of the Jain sequence for \nu=2/5. Comparison of the Fradkin-Lopez model with the Wen one is presented within a field theoretical construction, focusing on similarities and differences. We demonstrate that both models predict the same universal role for the multiple-quasiparticle agglomerates that dominate on single quasiparticles at low energy. This result is induced by the presence of neutral modes with finite velocity and is essential to explain the anomalous behavior of tunneling conductance and noise through a point contact.Comment: 6 pages, in press Physica E as proceedings of FQMT0

    Spin texture on the Fermi surface of tensile strained HgTe

    Get PDF
    We present ab initio and k.p calculations of the spin texture on the Fermi surface of tensile strained HgTe, which is obtained by stretching the zincblende lattice along the (111) axis. Tensile strained HgTe is a semimetal with pointlike accidental degeneracies between a mirror symmetry protected twofold degenerate band and two nondegenerate bands near the Fermi level. The Fermi surface consists of two ellipsoids which contact at the point where the Fermi level crosses the twofold degenerate band along the (111) axis. However, the spin texture of occupied states indicates that neither ellipsoid carries a compensating Chern number. Consequently, the spin texture is locked in the plane perpendicular to the (111) axis, exhibits a nonzero winding number in that plane, and changes winding number from one end of the Fermi ellipsoids to the other. The change in the winding of the spin texture suggests the existence of singular points. An ordered alloy of HgTe with ZnTe has the same effect as stretching the zincblende lattice in the (111) direction. We present ab initio calculations of ordered Hg_xZn_1-xTe that confirm the existence of a spin texture locked in a 2D plane on the Fermi surface with different winding numbers on either end.Comment: 8 pages, 8 figure

    Elementary analysis of the special relativistic combination of velocities, Wigner rotation, and Thomas precession

    Full text link
    The purpose of this paper is to provide an elementary introduction to the qualitative and quantitative results of velocity combination in special relativity, including the Wigner rotation and Thomas precession. We utilize only the most familiar tools of special relativity, in arguments presented at three differing levels: (1) utterly elementary, which will suit a first course in relativity; (2) intermediate, to suit a second course; and (3) advanced, to suit higher level students. We then give a summary of useful results, and suggest further reading in this often obscure field.Comment: V1: 25 pages, 6 figures; V2: 22 pages, 5 figures. The revised version is shortened and the arguments streamlined. Minor changes in notation and figures. This version matches the published versio
    • …
    corecore