16,215 research outputs found
Symplectic-energy-momentum preserving variational integrators
The purpose of this paper is to develop variational integrators for conservative mechanical systems that are symplectic and energy and momentum conserving. To do this, a space–time view of variational integrators is employed and time step adaptation is used to impose the constraint of conservation of energy. Criteria for the solvability of the time steps and some numerical examples are given
Variational integrators, the Newmark scheme, and dissipative systems
Variational methods are a class of symplectic-momentum integrators for ODEs. Using
these schemes, it is shown that the classical Newmark algorithm is structure preserving in a
non-obvious way, thus explaining the observed numerical behavior. Modifications to variational
methods to include forcing and dissipation are also proposed, extending the advantages
of structure preserving integrators to non-conservative systems
Frictional Collisions Off Sharp Objects
This work develops robust contact algorithms capable of dealing with multibody nonsmooth contact
geometries for which neither normals nor gap functions can be defined. Such situations arise
in the early stage of fragmentation when a number of angular fragments undergo complex collision
sequences before eventually scattering. Such situations precludes the application of most contact
algorithms proposed to date
Topological Order and the Quantum Spin Hall Effect
The quantum spin Hall (QSH) phase is a time reversal invariant electronic
state with a bulk electronic band gap that supports the transport of charge and
spin in gapless edge states. We show that this phase is associated with a novel
topological invariant, which distinguishes it from an ordinary insulator.
The classification, which is defined for time reversal invariant
Hamiltonians, is analogous to the Chern number classification of the quantum
Hall effect. We establish the order of the QSH phase in the two band
model of graphene and propose a generalization of the formalism applicable to
multi band and interacting systems.Comment: 4 pages RevTeX. Added reference, minor correction
Transport in Luttinger Liquids
We give a brief introduction to Luttinger liquids and to the phenomena of
electronic transport or conductance in quantum wires. We explain why the
subject of transport in Luttinger liquids is relevant and fascinating and
review some important results on tunneling through barriers in a
one-dimensional quantum wire and the phenomena of persistent currents in
mesoscopic rings. We give a brief description of our own work on transport
through doubly-crossed Luttinger liquids and transport in the Schulz-Shastry
exactly solvable Luttinger-like model.Comment: Latex file, 15 pages, four eps figure
When is an alternative possibility robust?
According to some, free will requires alternative possibilities. But not any old alternative possibility will do. Sometimes, being able to bring about an alternative does not bestow any control on an agent. In order to bestow control, and so be directly relevant qua alternative to grounding the agent's moral responsibility, alternatives need to be robust. Here, I investigate the nature of robust alternatives. I argue that Derk Pereboom's latest robustness criterion is too strong, and I suggest a different criterion based on the idea that what agents need to be able to do is keep open the possibility of securing their blamelessness, rather than needing to directly ensure their own blamelessness at the time of decision
Magnetic field-assisted manipulation and entanglement of Si spin qubits
Architectures of donor-electron based qubits in silicon near an oxide
interface are considered theoretically. We find that the precondition for
reliable logic and read-out operations, namely the individual identification of
each donor-bound electron near the interface, may be accomplished by
fine-tuning electric and magnetic fields, both applied perpendicularly to the
interface. We argue that such magnetic fields may also be valuable in
controlling two-qubit entanglement via donor electron pairs near the interface.Comment: 4 pages, 4 figures. 1 ref and 1 footnote adde
- …