382 research outputs found

    A Study on Performance and Power Efficiency of Dense Non-Volatile Caches in Multi-Core Systems

    Full text link
    In this paper, we present a novel cache design based on Multi-Level Cell Spin-Transfer Torque RAM (MLC STTRAM) that can dynamically adapt the set capacity and associativity to use efficiently the full potential of MLC STTRAM. We exploit the asymmetric nature of the MLC storage scheme to build cache lines featuring heterogeneous performances, that is, half of the cache lines are read-friendly, while the other is write-friendly. Furthermore, we propose to opportunistically deactivate ways in underutilized sets to convert MLC to Single-Level Cell (SLC) mode, which features overall better performance and lifetime. Our ultimate goal is to build a cache architecture that combines the capacity advantages of MLC and performance/energy advantages of SLC. Our experiments show an improvement of 43% in total numbers of conflict misses, 27% in memory access latency, 12% in system performance, and 26% in LLC access energy, with a slight degradation in cache lifetime (about 7%) compared to an SLC cache

    Affine Modeling of Program Traces

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in IEEE Transactions on Computers. The final authenticated version is available online at: http://dx.doi.org/10.1109/TC.2018.2853747[Abstract] A formal, high-level representation of programs is typically needed for static and dynamic analyses performed by compilers. However, the source code of target applications is not always available in an analyzable form, e.g., to protect intellectual property. To reason on such applications it becomes necessary to build models from observations of its execution. This paper presents an algebraic approach which, taking as input the trace of memory addresses accessed by a single memory reference, synthesizes an affine loop with a single perfectly nested statement that generates the original trace. This approach is extended to support the synthesis of unions of affine loops, useful for minimally modeling traces generated by automatic transformations of polyhedral programs, such as tiling. The resulting system is capable of processing hundreds of gigabytes of trace data in minutes, minimally reconstructing 100 percent of the static control parts in PolyBench/C applications and 99.9 percent in the Pluto-tiled versions of these benchmarks.Ministerio de Economía y Competitividad; TIN2016-75845-PNational Science Foundation (Estados Unidos); 1626251National Science Foundation (Estados Unidos); 1409095National Science Foundation (Estados Unidos); 1439057National Science Foundation (Estados Unidos); 1213052National Science Foundation (Estados Unidos); 1439021National Science Foundation (Estados Unidos); 162912

    Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    Get PDF
    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1-15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light

    Heterogeneous Catalysis under pressure - In-situ neutron diffraction under industrial conditions

    Get PDF
    The present work describes the application of a tubular reactor that allows in-situ neutron diffraction on working catalysts at high pressures. The designed reactor enables the application to a sample of industrially-relevant reaction conditions, i.e., in a temperature range up to 330° C and 60 bar pressure, coupled with online gas-analysis. Application of the cell is demonstrated by ammonia synthesis over a commercial catalyst with diffraction data obtained from the high-resolution powder diffractometer, Echidna, at the Australian Nuclear Science and Technology Organisation, ANSTO

    Tracking the timing of Neotethyan oceanic slab break-off: Geochronology and geochemistry of the quartz diorite porphyries, NE Turkey

    Get PDF
    The initiation of the break-off of the northern branch of the Neotethyan oceanic lithosphere is an important but poorly understood event in the geology of the Sakarya Zone (SZ) in northeastern Turkey. Although it is well-known that Latest Cretaceous intrusives (~70 Ma) and early Eocene adakitic magmatic rocks are present in the eastern SZ, the outcrops of the early Eocene non-adakitic rocks are very limited, and their tectono-magmatic evolution has not been studied. We describe a small outcrop of non-adakitic quartz diorite porphyry in the Kov area of the Gümüşhane region in northeastern Turkey. The genesis of these porphyries is significant in evaluating the syn- to post-collision-related magmatism. The LA-ICP-MS zircon U-Pb dating revealed that the Kov quartz diorite porphyries (KQDP) formed at ca. 50 Ma, coeval with adakitic rocks, and ~20 Myr later than the slab roll-back-related intrusive rocks. The KQDPs are calc-alkaline in composition and enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, Ti), with significant negative anomalies of Nb, Ta, and Ti but positive anomalies of Th, U, and Pb. Isotopic compositions of the samples show limited range of variation and slight enrichment of 87Sr/86Sr(t) (0.70489 to 0.70555), εNd(t) (−1.4 to −1.2) with TDM of 1.11 to 1.61 Ga. Pb isotopic ratios of the samples point to an enriched mantle source. They were likely crystallized from the melt that originated from an EM2-type spinel-facies subcontinental lithospheric mantle (SCLM), followed by the fractionation with insignificant crustal assimilation. The SCLM was metasomatically enriched, and the metasomatic agent was likely H2O-rich fluids rather than sediments released from subducting oceanic crust during the Late Cretaceous closure of the Neotethyan oceanic lithosphere. In conjunction with the geological background and previous data, we propose that the generation of the KQDPs resulted from a slab break-off event that caused ascending or infiltration of hot asthenosphere, triggering mantle melting. Such sporadic occurrences of the KQDPs, with coeval adakitic rocks in the SZ, are likely associated with the onset of extensional tectonics due to the earlier stage of slab break-off along the region during the early Eocene period.publishe

    SPM management using markov chain based data access prediction

    Get PDF
    Leveraging the power of scratchpad memories (SPMs) available in most embedded systems today is crucial to extract maximum performance from application programs. While regular accesses like scalar values and array expressions with affine subscript functions have been tractable for compiler analysis (to be prefetched into SPM), irregular accesses like pointer accesses and indexed array accesses have not been easily amenable for compiler analysis. This paper presents an SPM management technique using Markov chain based data access prediction for such irregular accesses. Our approach takes advantage of inherent, but hidden reuse in data accesses made by irregular references. We have implemented our proposed approach using an optimizing compiler. In this paper, we also present a thorough comparison of our different dynamic prediction schemes with other SPM management schemes. SPM management using our approaches produces 12.7% to 28.5% improvements in performance across a range of applications with both regular and irregular access patterns, with an average improvement of 20.8%
    corecore