203 research outputs found

    Measurement of Exclusive B Decays to Final States Containing a Charmed Baryon

    Get PDF
    Using data collected by the CLEO detector in the Upsilon(4S) region, we report new measurements of the exclusive decays of B mesons into final states of the type Lambda_c^+ p-bar n(pi), where n=0,1,2,3. We find signals in modes with one, two and three pions and an upper limit for the two body decay Lambda_c^+ pbar. We also make the first measurements of exclusive decays of B mesons to Sigma_c p-bar n(pi), where n=0,1,2. We find signals in modes with one and two pions and an upper limit for the two body decay Sigma_c p-bar. Measurements of these modes shed light on the mechanisms involved in B decays to baryons.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Dalitz Plot Analysis of Ds to K+K-pi+

    Full text link
    We perform a Dalitz plot analysis of the decay Ds to K+K-pi+ with the CLEO-c data set of 586/pb of e+e- collisions accumulated at sqrt(s) = 4.17 GeV. This corresponds to about 0.57 million D_s+D_s(*)- pairs from which we select 14400 candidates with a background of roughly 15%. In contrast to previous measurements we find good agreement with our data only by including an additional f_0(1370)pi+ contribution. We measure the magnitude, phase, and fit fraction of K*(892) K+, phi(1020)pi+, K0*(1430)K+, f_0(980)pi+, f_0(1710)pi+, and f_0(1370)pi+ contributions and limit the possible contributions of other KK and Kpi resonances that could appear in this decay.Comment: 21 Pages,available through http://www.lns.cornell.edu/public/CLNS/, submitted to PR

    Search for D0 to p e- and D0 to pbar e+

    Full text link
    Using data recorded by CLEO-c detector at CESR, we search for simultaneous baryon and lepton number violating decays of the D^0 meson, specifically, D^0 --> p-bar e^+, D^0-bar --> p-bar e^+, D^0 --> p e^- and D^0-bar --> p e^-. We set the following branching fraction upper limits: D^0 --> p-bar e^+ (D^0-bar --> p-bar e^+) p e^- (D^0-bar --> p e^-) < 1.2 * 10^{-5}, both at 90% confidence level.Comment: 10 pages, available through http://www.lns.cornell.edu/public/CLNS/, submitted to PRD. Comments: changed abstract, added reference for section 1, vertical axis in Fig.5 changed (starts from 1.5 rather than 2.0), fixed typo

    Charmonium decays to gamma pi0, gamma eta, and gamma eta'

    Full text link
    Using data acquired with the CLEO-c detector at the CESR e+e- collider, we measure branching fractions for J/psi, psi(2S), and psi(3770) decays to gamma pi0, gamma eta, and gamma eta'. Defining R_n = B[ psi(nS)-->gamma eta ]/B[ psi(nS)-->gamma eta' ], we obtain R_1 = (21.1 +- 0.9)% and, unexpectedly, an order of magnitude smaller limit, R_2 < 1.8% at 90% C.L. We also use J/psi-->gamma eta' events to determine branching fractions of improved precision for the five most copious eta' decay modes.Comment: 14 pages, available through http://www.lns.cornell.edu/public/CLNS/, published in Physical Review

    Precision Measurement of the Mass of the h_c(1P1) State of Charmonium

    Full text link
    A precision measurement of the mass of the h_c(1P1) state of charmonium has been made using a sample of 24.5 million psi(2S) events produced in e+e- annihilation at CESR. The reaction used was psi(2S) -> pi0 h_c, pi0 -> gamma gamma, h_c -> gamma eta_c, and the reaction products were detected in the CLEO-c detector. Data have been analyzed both for the inclusive reaction and for the exclusive reactions in which eta_c decays are reconstructed in fifteen hadronic decay channels. Consistent results are obtained in the two analyses. The averaged results of the present measurements are M(h_c)=3525.28+-0.19 (stat)+-0.12(syst) MeV, and B(psi(2S) -> pi0 h_c)xB(h_c -> gamma eta_c)= (4.19+-0.32+-0.45)x10^-4. Using the 3PJ centroid mass, Delta M_hf(1P)= - M(h_c) = +0.02+-0.19+-0.13 MeV.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS/, submitted to PR

    Precision Measurement of B(D+ -> mu+ nu) and the Pseudoscalar Decay Constant fD+

    Full text link
    We measure the branching ratio of the purely leptonic decay of the D+ meson with unprecedented precision as B(D+ -> mu+ nu) = (3.82 +/- 0.32 +/- 0.09)x10^(-4), using 818/pb of data taken on the psi(3770) resonance with the CLEO-c detector at the CESR collider. We use this determination to derive a value for the pseudoscalar decay constant fD+, combining with measurements of the D+ lifetime and assuming |Vcd| = |Vus|. We find fD+ = (205.8 +/- 8.5 +/- 2.5) MeV. The decay rate asymmetry [B(D+ -> mu+ nu)-B(D- -> mu- nu)]/[B(D+ -> mu+ nu)+B(D- -> mu- nu)] = 0.08 +/- 0.08, consistent with no CP violation. We also set 90% confidence level upper limits on B(D+ -> tau+ nu) < 1.2x10^(-3) and B(D+ -> e+ nu) < 8.8x10^(-6).Comment: 24 pages, 11 figures and 6 tables, v2 replaced some figure vertical axis scales, v3 corrections from PRD revie

    Measurement of the Absolute Branching Fraction of D_s^+ --> tau^+ nu_tau Decay

    Full text link
    Using a sample of tagged D_s decays collected near the D^*_s D_s peak production energy in e+e- collisions with the CLEO-c detector, we study the leptonic decay D^+_s to tau^+ nu_tau via the decay channel tau^+ to e^+ nu_e bar{nu}_tau. We measure B(D^+_s to tau^+ nu_tau) = (6.17 +- 0.71 +- 0.34) %, where the first error is statistical and the second systematic. Combining this result with our measurements of D^+_s to mu^+ nu_mu and D^+_s to tau^+ nu_tau (via tau^+ to pi^+ bar{nu}_tau), we determine f_{D_s} = (274 +- 10 +- 5) MeV.Comment: 9 pages, postscript also available through http://www.lns.cornell.edu/public/CLNS/2007/, revise

    J/psi and psi(2S) Radiative Transitions to eta_c

    Full text link
    Using 24.5 million psi(2S) decays collected with the CLEO-c detector at CESR we present the most precise measurements of magnetic dipole transitions in the charmonium system. We measure B(psi(2S)->gamma eta_c) = (4.32+/-0.16+/-0.60)x10^-3, B(J/psi->gamma eta_c)/B(psi(2S)->gamma eta_c) = 4.59+/-0.23+/-0.64, and B(J/psi->gamma eta_c) = (1.98+/-0.09+/-0.30)%. We observe a distortion in the eta_c line shape due to the photon-energy dependence of the magnetic dipole transition rate. We find that measurements of the eta_c mass are sensitive to the line shape, suggesting an explanation for the discrepancy between measurements of the eta_c mass in radiative transitions and other production mechanisms.Comment: 11 pages, 3 figure

    Inclusive chi_bJ(nP) Decays to D0 X

    Full text link
    Using Upsilon(2S) and Upsilon(3S) data collected with the CLEO III detector we have searched for decays of chi_bJ to final states with open charm. We fully reconstruct D0 mesons with p_D0 > 2.5 GeV/c in three decay modes (K-pi+, K-pi+pi0, and K-pi-pi+pi+) in coincidence with radiative transition photons that tag the production of one of the chi_bJ(nP) states. We obtain significant signals for the two J=1 states. Recent NRQCD calculations of chi_{bJ}(nP) --> c cbar X depend on one non-perturbative parameter per chi_bJ triplet. The extrapolation from the observed D0 X rate over a limited momentum range to a full c cbar X rate also depends on these same parameters. Using our data to fit for these parameters, we extract results which agree well with NRQCD predictions, confirming the expectation that charm production is largest for the J=1 states. In particular, for J=1, our results are consistent with c cbar g accounting for about one-quarter of all hadronic decays.Comment: Version 2 updates include corrections to important errors in Table V and VII column headers which summarize results, and additional minor edits. 17 pages, available through http://www.lns.cornell.edu/public/CLNS

    Measurement of the Masses and Widths of the Sigma_c^++ and Sigma_c^0 Charmed Baryons

    Full text link
    Using data recorded by the CLEO II and CLEO II.V detector configurations at CESR, we report new measurements of the masses of the Sigma_c^{++} and Sigma_c^0 charmed baryons, and the first measurements of their intrinsic widths. We find M(Sigma_c^{++}) - M(Lambda_c^+) = 167.4 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^{++}) = 2.3 +- 0.2 +- 0.3 MeV, and M(Sigma_c^0) - M(Lambda_c^+) = 167.2 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^0) = 2.5 +- 0.2 +- 0.3 MeV, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communications. Reference [13] correcte
    • …
    corecore