222 research outputs found
Localized Excitons and Breaking of Chemical Bonds at III-V (110) Surfaces
Electron-hole excitations in the surface bands of GaAs(110) are analyzed
using constrained density-functional theory calculations. The results show that
Frenkel-type autolocalized excitons are formed. The excitons induce a local
surface unrelaxation which results in a strong exciton-exciton attraction and
makes complexes of two or three electron-hole pairs more favorable than
separate excitons. In such microscopic exciton "droplets" the
electron density is mainly concentrated in the dangling orbital of a surface Ga
atom whereas the holes are distributed over the bonds of this atom to its As
neighbors thus weakening the bonding to the substrate. This finding suggests
the microscopic mechanism of a laser-induced emission of neutral Ga atoms from
GaAs and GaP (110) surfaces.Comment: submitted to PRL, 10 pages, 4 figures available upon request from:
[email protected]
A low COMT activity haplotype is associated with recurrent preeclampsia in a Norwegian population cohort (HUNT2)
The etiology of preeclampsia is complex, with susceptibility being attributable to multiple environmental factors and a large genetic component. Although many candidate genes for preeclampsia have been suggested and studied, the specific causative genes still remain to be identified. Catechol-O-methyltransferase (COMT) is an enzyme involved in catecholamine and estrogen degradation and has recently been ascribed a role in development of preeclampsia. In the present study, we have examined the COMT gene by genotyping the functional Val108/158Met polymorphism (rs4680) and an additional single-nucleotide polymorphism, rs6269, predicting COMT activity haplotypes in a large Norwegian case/control cohort (ncases= 1135, ncontrols= 2262). A low COMT activity haplotype is associated with recurrent preeclampsia in our cohort. This may support the role of redox-regulated signaling and oxidative stress in preeclampsia pathogenesis as suggested by recent studies in a genetic mouse model. The COMT gene might be a genetic risk factor shared between preeclampsia and cardiovascular diseases
Mouse models for preeclampsia: disruption of redox-regulated signaling
The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high
blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which
counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting
redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger
inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD
Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors
Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)
GW501516, a PPARδ Agonist, Ameliorates Tubulointerstitial Inflammation in Proteinuric Kidney Disease via Inhibition of TAK1-NFκB Pathway in Mice
Peroxisome proliferator-activated receptors (PPARs) are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA)-bound albumin or PBS(−). In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate)-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1)-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases
Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes.
Monoamine oxidase (MAO) inhibitors ameliorate contractile function in diabetic animals, but the mechanisms remain unknown. Equally elusive is the interplay between the cardiomyocyte alterations induced by hyperglycemia and the accompanying inflammation. Here we show that exposure of primary cardiomyocytes to high glucose and pro-inflammatory stimuli leads to MAO-dependent increase in reactive oxygen species that causes permeability transition pore opening and mitochondrial dysfunction. These events occur upstream of endoplasmic reticulum (ER) stress and are abolished by the MAO inhibitor pargyline, highlighting the role of these flavoenzymes in the ER/mitochondria cross-talk. In vivo, streptozotocin administration to mice induced oxidative changes and ER stress in the heart, events that were abolished by pargyline. Moreover, MAO inhibition prevented both mast cell degranulation and altered collagen deposition, thereby normalizing diastolic function. Taken together, these results elucidate the mechanisms underlying MAO-induced damage in diabetic cardiomyopathy and provide novel evidence for the role of MAOs in inflammation and inter-organelle communication. MAO inhibitors may be considered as a therapeutic option for diabetic complications as well as for other disorders in which mast cell degranulation is a dominant phenomenon
Epistasis between COMT and MTHFR in Maternal-Fetal Dyads Increases Risk for Preeclampsia
Preeclampsia is a leading cause of perinatal morbidity and mortality. This disorder is thought to be multifactorial in origin, with multiple genes, environmental and social factors, contributing to disease. One proposed mechanism is placental hypoxia-driven imbalances in angiogenic and anti-angiogenic factors, causing endothelial cell dysfunction. Catechol-O-methyltransferase (Comt)-deficient pregnant mice have a preeclampsia phenotype that is reversed by exogenous 2-methoxyestradiol (2-ME), an estrogen metabolite generated by COMT. 2-ME inhibits Hypoxia Inducible Factor 1α, a transcription factor mediating hypoxic responses. COMT has been shown to interact with methylenetetrahydrofolate reductase (MTHFR), which modulates the availability of S-adenosylmethionine (SAM), a COMT cofactor. Variations in MTHFR have been associated with preeclampsia. By accounting for allelic variation in both genes, the role of COMT has been clarified. COMT allelic variation is linked to enzyme activity and four single nucleotide polymorphisms (SNPs) (rs6269, rs4633, rs4680, and rs4818) form haplotypes that characterize COMT activity. We tested for association between COMT haplotypes and the MTHFR 677 C→T polymorphism and preeclampsia risk in 1103 Chilean maternal-fetal dyads. The maternal ACCG COMT haplotype was associated with reduced risk for preeclampsia (P = 0.004), and that risk increased linearly from low to high activity haplotypes (P = 0.003). In fetal samples, we found that the fetal ATCA COMT haplotype and the fetal MTHFR minor “T” allele interact to increase preeclampsia risk (p = 0.022). We found a higher than expected number of patients with preeclampsia with both the fetal risk alleles alone (P = 0.052) and the fetal risk alleles in combination with a maternal balancing allele (P<0.001). This non-random distribution was not observed in controls (P = 0.341 and P = 0.219, respectively). Our findings demonstrate a role for both maternal and fetal COMT in preeclampsia and highlight the importance of including allelic variation in MTHFR
- …