14 research outputs found

    Application of the Hope Theory to Understand Reconstruction Beliefs and Life Satisfaction Level among Residents following the Fukushima Disaster

    Get PDF
    The Great Eastern Japan Earthquake struck in 2011, which had an enormous impact on society and lives in the northern part of the Japan (Tohoku region). The disaster also led to hydrogen explosion at the Fukushima Daiichi Nuclear Plant (FDNP), resulting in leakage of radioactive substances that contaminated the surrounding area. The Fukushima population is highly stressed and lives under constant fear of radiation, in addition to losing neighbors to evacuations during the earthquakes and the tsunami. Yet, there is lack of research on the psychological state of Japanese earthquake survivors. The present study uses psychological variables to measure hope for understanding how these factors could explain beliefs toward reconstruction and life satisfaction level of the local residents in Miyakoji town of Fukushima Prefecture. The survey (n=223) showed that only a few residents (about 30%) believed in successful reconstruction. Regression analysis revealed that factors of hope such as pathway and agency thinking have an influence on respondents’ beliefs regarding reconstruction and their level of life satisfaction. Future outreach and supporting activities should target raising residents’ hope to increase their psychological well-being

    Plasma Corticosterone Activates SGK1 and Induces Morphological Changes in Oligodendrocytes in Corpus Callosum

    Get PDF
    Repeated stressful events are known to be associated with onset of depression. Further, stress activates the hypothalamic–pituitary–adrenocortical (HPA) system by elevating plasma cortisol levels. However, little is known about the related downstream molecular pathway. In this study, by using repeated water-immersion and restraint stress (WIRS) as a stressor for mice, we attempted to elucidate the molecular pathway induced by elevated plasma corticosterone levels. We observed the following effects both, in vivo and in vitro: (1) repeated exposure to WIRS activates the 3-phosphoinositide-dependent protein kinase (PDK1)–serum glucocorticoid regulated kinase (SGK1)–N-myc downstream-regulated gene 1 (NDRG1)–adhesion molecule (i.e., N-cadherin, α-catenin, and β-catenin) stabilization pathway via an increase in plasma corticosterone levels; (2) the activation of this signaling pathway induces morphological changes in oligodendrocytes; and (3) after recovery from chronic stress, the abnormal arborization of oligodendrocytes and depression-like symptoms return to the control levels. Our data strongly suggest that these abnornalities of oligodendrocytes are possibly related to depression-like symptoms

    Giant Pedunculated Pilomatricoma.

    No full text

    Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1l1 expression

    No full text
    Objective: The transcription factor cyclic AMP-responsive element-binding protein H (CREBH, encoded by Creb3l3) is highly expressed in the liver and small intestine. Hepatic CREBH contributes to glucose and triglyceride metabolism by regulating fibroblast growth factor 21 (Fgf21) expression. However, the intestinal CREBH function remains unknown. Methods: To investigate the influence of intestinal CREBH on cholesterol metabolism, we compared plasma, bile, fecal, and tissue cholesterol levels between wild-type (WT) mice and mice overexpressing active human CREBH mainly in the small intestine (CREBH Tg mice) under different dietary conditions. Results: Plasma cholesterol, hepatic lipid, and cholesterol crystal formation in the gallbladder were lower in CREBH Tg mice fed a lithogenic diet (LD) than in LD-fed WTs, while fecal cholesterol output was higher in the former. These results suggest that intestinal CREBH overexpression suppresses cholesterol absorption, leading to reduced plasma cholesterol, limited hepatic supply, and greater excretion. The expression of Niemann–Pick C1-like 1 (Npc1l1), a rate-limiting transporter mediating intestinal cholesterol absorption, was reduced in the small intestine of CREBH Tg mice. Adenosine triphosphate-binding cassette transporter A1 (Abca1), Abcg5/8, and scavenger receptor class B, member 1 (Srb1) expression levels were also reduced in CREBH Tg mice. Promoter assays revealed that CREBH directly regulates Npc1l1 expression. Conversely, CREBH null mice exhibited higher intestinal Npc1l1 expression, elevated plasma and hepatic cholesterol, and lower fecal output. Conclusion: Intestinal CREBH regulates dietary cholesterol flow from the small intestine by controlling the expression of multiple intestinal transporters. We propose that intestinal CREBH could be a therapeutic target for hypercholesterolemia. Keywords: CREBH, Npc1l1, Cholesterol, Intestin

    Pivotal role for S-nitrosylation of DNA methyltransferase 3B in epigenetic regulation of tumorigenesis

    Get PDF
    DNA methyltransferases (DNMTs) catalyze methylation at the C5 position of cytosine with S-adenosyl-l-methionine. Methylation regulates gene expression, serving a variety of physiological and pathophysiological roles. The chemical mechanisms regulating DNMT enzymatic activity, however, are not fully elucidated. Here, we show that protein S-nitrosylation of a cysteine residue in DNMT3B attenuates DNMT3B enzymatic activity and consequent aberrant upregulation of gene expression. These genes include Cyclin D2 (Ccnd2), which is required for neoplastic cell proliferation in some tumor types. In cell-based and in vivo cancer models, only DNMT3B enzymatic activity, and not DNMT1 or DNMT3A, affects Ccnd2 expression. Using structure-based virtual screening, we discovered chemical compounds that specifically inhibit S-nitrosylation without directly affecting DNMT3B enzymatic activity. The lead compound, designated DBIC, inhibits S-nitrosylation of DNMT3B at low concentrations (IC50 <= 100nM). Treatment with DBIC prevents nitric oxide (NO)-induced conversion of human colonic adenoma to adenocarcinoma in vitro. Additionally, in vivo treatment with DBIC strongly attenuates tumor development in a mouse model of carcinogenesis triggered by inflammation-induced generation of NO. Our results demonstrate that de novo DNA methylation mediated by DNMT3B is regulated by NO, and DBIC protects against tumor formation by preventing aberrant S-nitrosylation of DNMT3B
    corecore