11 research outputs found
New treatment of breakup continuum in the method of continuum discretized coupled channels
A new method of pseudo-state discretization is proposed for the method of
continuum discretized coupled channels (CDCC) to deal with three-body breakup
processes. We propose real- and complex-range Gaussian bases for the
pseudo-state wave functions, and show that they form in good approximation a
complete set in the configuration space which is important for breakup
processes.
Continuous S-matrix elements are derived with the approximate completeness
from discrete ones calculated by CDCC.
Accuracy of the method is tested quantitatively for two realistic examples,
d+Ni scattering at 80 MeV and Li+Ca scattering at 156 MeV
with the satisfactory results. Possibility of application of the method to
four-body breakup processes is also discussed.Comment: 10 pages, 14 Postscript figures, uses REVTeX 4, submitted to Phys.
Rev.
Strong-field terahertz-optical mixing in excitons
Driving a double-quantum-well excitonic intersubband resonance with a
terahertz (THz) electric field of frequency \omega_{THz} generated terahertz
optical sidebands \omega=\omega_{THz}+\omega_{NIR} on a weak NIR probe. At high
THz intensities, the intersubband dipole energy which coupled two excitons was
comparable to the THz photon energy. In this strong-field regime the sideband
intensity displayed a non-monotonic dependence on the THz field strength. The
oscillating refractive index which gives rise to the sidebands may be
understood by the formation of Floquet states, which oscillate with the same
periodicity as the driving THz field.Comment: 4 pages, 6 figure