3,798 research outputs found

    Kinetic simulations of ladder climbing by electron plasma waves

    Get PDF
    The energy of plasma waves can be moved up and down the spectrum using chirped modulations of plasma parameters, which can be driven by external fields. Depending on whether the wave spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth \textit{et al.} [PRL \textbf{115}, 075001 (2015)] based on a linear fluid model. In this paper, LC of electron plasma waves is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is shown that, in agreement with the basic theory, plasmons survive substantial transformations of the spectrum and are destroyed only when their wave numbers become large enough to trigger Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir waves \textit{per~se}

    Guest editorial : selected papers from the 14th international seminar on power semiconductors (ISPS 2018)

    Get PDF

    Submillimeter-wave emission of three Galactic red novae: cool molecular outflows produced by stellar mergers

    Full text link
    Red novae are optical transients erupting at luminosities typically higher than those of classical novae. Their outbursts are believed to be caused by stellar mergers. We present millimeter/submillimeter-wave observations with ALMA and SMA of the three best known Galactic red novae, V4332 Sgr, V1309 Sco, and V838 Mon. The observations were taken 22, 8, and 14 yr after their respective eruptions and reveal the presence of molecular gas at excitation temperatures of 35-200 K. The gas displays molecular emission in rotational transitions with very broad lines (full width ∼\sim400 km\s). We found emission of CO, SiO, SO, SO2_2 (in all three red novae), H2_2S (covered only in V838 Mon) and AlO (present in V4332 Sgr and V1309 Sco). No anomalies were found in the isotopic composition of the molecular material and the chemical (molecular) compositions of the three red novae appear similar to those of oxygen-rich envelopes of classical evolved stars (RSGs, AGBs, post-AGBs). The minimum masses of the molecular material that most likely was dispersed in the red-nova eruptions are 0.1, 0.01, and 10−4^{-4} M⊙_{\odot} for V838 Mon, V4332 Sgr, and V1309 Sco, respectively. The molecular outflows in V4332 Sgr and V1309 Sco are spatially resolved and appear bipolar. The kinematic distances to V1309 Sco and V4332 Sgr are 2.1 and 4.2 kpc, respectively. The kinetic energy stored in the ejecta of the two older red-nova remnants of V838 Mon and V4332 Sgr is of order 104610^{46} erg, similar to values found for some post-AGB (pre-PN) objects whose bipolar ejecta were also formed in a short-duration eruption. Our observations strengthen the link between these post-AGB objects and red novae and support the hypothesis that some of the post-AGB objects were formed in a common-envelope ejection event or its most catastrophic outcome, a merger.Comment: 19 pages, 13 figures, accepted to A&

    Towards Loop Quantum Supergravity (LQSG) II. p-Form Sector

    Full text link
    In our companion paper, we focussed on the quantisation of the Rarita-Schwinger sector of Supergravity theories in various dimensions by using an extension of Loop Quantum Gravity to all spacetime dimensions. In this paper, we extend this analysis by considering the quantisation of additional bosonic fields necessary to obtain a complete SUSY multiplet next to graviton and gravitino in various dimensions. As a generic example, we study concretely the quantisation of the 3-index photon of 11d SUGRA, but our methods easily extend to more general p-form fields. Due to the presence of a Chern-Simons term for the 3-index photon, which is due to local SUSY, the theory is self-interacting and its quantisation far from straightforward. Nevertheless, we show that a reduced phase space quantisation with respect to the 3-index photon Gauss constraint is possible. Specifically, the Weyl algebra of observables, which deviates from the usual CCR Weyl algebras by an interesting twist contribution proportional to the level of the Chern-Simons theory, admits a background independent state of the Narnhofer-Thirring type.Comment: 12 pages. v2: Journal version. Minor clarifications and correction

    Physical Properties of Metallic Antiferromagnetic CaCo{1.86}As2 Single Crystals

    Full text link
    We report studies of CaCo{1.86}As2 single crystals. The electronic structure is probed by angle-resolved photoemission spectroscopy (ARPES) measurements of CaCo{1.86}As2 and by full-potential linearized augmented-plane-wave calculations for the supercell Ca8Co15As16 (CaCo{1.88}As2). Our XRD crystal structure refinement is consistent with the previous combined refinement of x-ray and neutron powder diffraction data showing a collapsed-tetragonal ThCr2Si2-type structure with 7(1)% vacancies on the Co sites corresponding to the composition CaCo{1.86}As2 [D. G. Quirinale et al., Phys. Rev. B 88, 174420 (2013)]. The anisotropic magnetic susceptibility chi(T) data are consistent with the magnetic neutron diffraction data of Quirianale et al. that demonstrate the presence of A-type collinear antiferromagnetic order below the Neel temperature TN = 52(1) K with the easy axis being the tetragonal c axis. However, no clear evidence from the resistivity rho(T) and heat capacity Cp(T) data for a magnetic transition at TN is observed. A metallic ground state is demonstrated from band calculations and the rho(T), Cp(T) and ARPES data, and spin-polarized calculations indicate a competition between the A-type AFM and FM ground states. The Cp(T) data exhibit a large Sommerfield electronic coefficient reflecting a large density of states at the Fermi energy D(EF), consistent with the band structure calculations which also indicate a large D(EF) arising from Co 3d bands. At 1.8 K the M(H) data for H|| c exhibit a well-defined first-order spin-flop transition at an applied field of 3.5 T. The small ordered moment of 0.3 muB/Co obtained from the M(H) data at low T, the large exchange enhancement of chi and the lack of a self-consistent interpretation of the chi(T) and M(H,T) data in terms of a local moment Heisenberg model together indicate that the magnetism of CaCo{1.86}As2 is itinerant.Comment: 18 pages, 15 figures, 4 tables, 61 references; v2: extended the fits of experimental data by additional electronic structure calculations; published versio

    An automaton over data words that captures EMSO logic

    Full text link
    We develop a general framework for the specification and implementation of systems whose executions are words, or partial orders, over an infinite alphabet. As a model of an implementation, we introduce class register automata, a one-way automata model over words with multiple data values. Our model combines register automata and class memory automata. It has natural interpretations. In particular, it captures communicating automata with an unbounded number of processes, whose semantics can be described as a set of (dynamic) message sequence charts. On the specification side, we provide a local existential monadic second-order logic that does not impose any restriction on the number of variables. We study the realizability problem and show that every formula from that logic can be effectively, and in elementary time, translated into an equivalent class register automaton

    Supersymmetric hydrodynamics from the AdS/CFT correspondence

    Full text link
    We compute holographically the dispersion relation for a hydrodynamic mode of fluctuation (the phonino) of the density of supersymmetry current in N = 4 SYM at strong coupling. The mode appears as a pole at low frequency and momentum in the correlator of supercurrents. It has a wave-like propagation, and we find its speed and coefficient of attenuation.Comment: 17 page
    • …
    corecore