11 research outputs found

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Electroactive Brevundimonas diminuta consortium mediated selenite bioreduction, biogenesis of selenium nanoparticles and bio-electricity generation

    No full text
    Abstract In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL-1 microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV–visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs

    Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis

    No full text
    International audienceTo identify shared polygenic risk and causal associations in amyotrophic lateral sclerosis (ALS).Methods: Linkage disequilibrium score regression and Mendelian randomization were applied in a large-scale, data-driven manner to explore genetic correlations and causal relationships between >700 phenotypic traits and ALS. Exposures consisted of publicly available genome-wide association studies (GWASes) summary statistics from MR Base and LD-hub. The outcome data came from the recently published ALS GWAS involving 20,806 cases and 59,804 controls. Multivariate analyses, genetic risk profiling, and Bayesian colocalization analyses were also performed.Results: We have shown, by linkage disequilibrium score regression, that ALS shares polygenic risk genetic factors with a number of traits and conditions, including positive correlations with smoking status and moderate levels of physical activity, and negative correlations with higher cognitive performance, higher educational attainment, and light levels of physical activity. Using Mendelian randomization, we found evidence that hyperlipidemia is a causal risk factor for ALS and localized putative functional signals within loci of interest.Interpretation: Here, we have developed a public resource (https://lng-nia.shinyapps.io/mrshiny) which we hope will become a valuable tool for the ALS community, and that will be expanded and updated as new data become available. Shared polygenic risk exists between ALS and educational attainment, physical activity, smoking, and tenseness/restlessness. We also found evidence that elevated low-desnity lipoprotein cholesterol is a causal risk factor for ALS. Future randomized controlled trials should be considered as a proof of causality. Ann Neurol 2019;85:470-481
    corecore