40 research outputs found

    Flow cytometry analysis of the effect of allopurinol and the dinitroaniline compound (Chloralin) on the viability and proliferation of Leishmania infantum promastigotes

    Get PDF
    BACKGROUND: Leishmaniasis is a major parasitic disease in the tropical regions. However, Leishmania infantum has recently emerged as a very important cause of opportunistic infections for individuals positive for human immunodeficiency virus (HIV). However, there is a lack of in vitro tests for assessing the effect of anti-parasitic drugs on the viability and proliferation of Leishmania infantum. The aim of this study is to assess the efficacy of anti-parasitic drugs like allopurinol and Chloralin on the viability and proliferation of L. infantum promastigotes by utilizing two complementary flow cytometric approaches after exposure of the promastigotes to various concentrations of the drugs. RESULTS: The density of the cultures in the presence and absence of allopurinol was determined by haemocytometer enumeration. The two flow cytometric approaches used to monitor the drug effect were: (i) a quantitative method to measure cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and (ii) evaluation of cell viability by dual-staining with the membrane-permeable nuclear stain, SBRY-14 and propidium iodide. It was found that concentrations of allopurinol above 50 μg/ml yielded a clear decrease in the proliferation rate of the promastigotes. However, the viability results showed that about 46.8% of the promastigotes incubated in the presence of 800 μg/ml of allopurinol were still alive after 96 hours. In sharp contrast, more than 90% of promastigotes treated with Chloralin 10 μM (2.7 μg/ml) were dead after 48 hours of treatment. These flow cytometric findings suggest that allopurinol has a leishmaniostatic effect while the dinitroaniline compound (Chloralin) has a leishmaniocidal effect against promastigotes. CONCLUSIONS: The flow cytometric data on proliferation and viability were consistent with results obtained from haemocytometer counts and allowed us to develop a model for assessing in vitro the effects of medicaments like allopurinol and chloralin on L. infantum promastigotes on a cellular level

    Isolated Rafts from Adriamycin-Resistant P388 Cells Contain Functional ATPases and Provide an Easy Test System for P-glycoprotein-Related Activities

    Get PDF
    No Heading: Purpose.: P-glycoprotein (P-gp), a membrane ATPase expelling many structurally unrelated compounds out of cells, is one of the major contributors to multidrug resistance. It is enriched in cold TritonX-100 insoluble membrane domains (i.e., rafts). The purpose of this work was to characterize the ATPase activities of raft preparations from P388 cells overexpressing P-gp (P388/ADR) or devoid of P-gp (P388) and to establish a P-gp-enriched screening system for P-gp-interfering compounds. Methods.: Rafts were extracted with cold TritonX-100. The ATPase activity was characterized in 96-well plates using a fluorescence assay. Results.: The ATPase activity per mg protein was about five times higher in P388/ADR rafts than in crude membranes. The anti-P-gp antibody C219 inhibited 20% of the activity in P388/ADR rafts but only about 10% of the activity in P388/ADR crude membranes and had no effect on the activity of P388 rafts. The known P-gp-activating compounds verapamil, progesterone, and valinomycin revealed the typical bell-shaped activity/concentration profiles in P388/ADR rafts, indicative for activation at low compound concentrations and inhibition at concentrations >10 to 100 μM. The inhibitory effect was also observed in P388 rafts. Conclusions.: Extracted rafts are rich in functional ATPases. Rafts from P-gp-overexpressing cells display P-gp-typical ATPase activity and provide an easy, P-gp-enriched screening syste

    Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field

    Get PDF
    New approaches to increase the efficiency of non-viral gene delivery are still required. Here we report a simple approach that enhances gene delivery using permanent and pulsating magnetic fields. DNA plasmids and novel DNA fragments (PCR products) containing sequence encoding for green fluorescent protein were coupled to polyethylenimine coated superparamagnetic nanoparticles (SPIONs). The complexes were added to cells that were subsequently exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency 40 times more than in cells not exposed to the magnetic field. The transfection efficiency was highest when the nanoparticles were sedimented on the permanent magnet before the application of the pulsating field, both for small (50 nm) and large (200-250 nm) nanoparticles. The highly efficient gene transfer already within 5 min shows that this technique is a powerful tool for future in vivo studies, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occur

    Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field

    Get PDF
    New approaches to increase the efficiency of non-viral gene delivery are still required. Here we report a simple approach that enhances gene delivery using permanent and pulsating magnetic fields. DNA plasmids and novel DNA fragments (PCR products) containing sequence encoding for green fluorescent protein were coupled to polyethylenimine coated superparamagnetic nanoparticles (SPIONs). The complexes were added to cells that were subsequently exposed to permanent and pulsating magnetic fields. Presence of these magnetic fields significantly increased the transfection efficiency 40 times more than in cells not exposed to the magnetic field. The transfection efficiency was highest when the nanoparticles were sedimented on the permanent magnet before the application of the pulsating field, both for small (50 nm) and large (200–250 nm) nanoparticles. The highly efficient gene transfer already within 5 min shows that this technique is a powerful tool for future in vivo studies, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs

    The age-specific incidence of hospitalized paediatric malaria in Uganda.

    Get PDF
    BACKGROUND: Understanding the relationship between malaria infection risk and disease outcomes represents a fundamental component of morbidity and mortality burden estimations. Contemporary data on severe malaria risks among populations of different parasite exposures are scarce. Using surveillance data, we compared rates of paediatric malaria hospitalisation in areas of varying parasite exposure levels. METHODS: Surveillance data at five public hospitals; Jinja, Mubende, Kabale, Tororo, and Apac were assembled among admissions aged 1 month to 14 years between 2017 and 2018. The address of each admission was used to define a local catchment population where national census data was used to define person-year-exposure to risk. Within each catchment, historical infection prevalence was assembled from previously published data and current infection prevalence defined using 33 population-based school surveys among 3400 children. Poisson regression was used to compute the overall and site-specific incidences with 95% confidence intervals. RESULTS: Both current and historical Plasmodium falciparum prevalence varied across the five sites. Current prevalence ranged from < 1% in Kabale to 54% in Apac. Overall, the malaria admission incidence rate (IR) was 7.3 per 1000 person years among children aged 1 month to 14 years of age (95% CI: 7.0, 7.7). The lowest rate was described at Kabale (IR = 0.3; 95 CI: 0.1, 0.6) and highest at Apac (IR = 20.3; 95 CI: 18.9, 21.8). There was a correlation between IR across the five sites and the current parasite prevalence in school children, though findings were not statistically significant. Across all sites, except Kabale, malaria admissions were concentrated among young children, 74% were under 5 years. The median age of malaria admissions at Kabale hospital was 40 months (IQR 20, 72), and at Apac hospital was 36 months (IQR 18, 69). Overall, severe anaemia (7.6%) was the most common presentation and unconsciousness (1.8%) the least common. CONCLUSION: Malaria hospitalisation rates remain high in Uganda particularly among young children. The incidence of hospitalized malaria in different locations in Uganda appears to be influenced by past parasite exposure, immune acquisition, and current risks of infection. Interruption of transmission through vector control could influence age-specific severe malaria risk

    What's normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically.

    Get PDF
    Background: Human milk is a complex fluid comprised of myriad substances, with one of the most abundant substances being a group of complex carbohydrates referred to as human milk oligosaccharides (HMOs). There has been some evidence that HMO profiles differ in populations, but few studies have rigorously explored this variability.Objectives: We tested the hypothesis that HMO profiles differ in diverse populations of healthy women. Next, we examined relations between HMO and maternal anthropometric and reproductive indexes and indirectly examined whether differences were likely related to genetic or environmental variations.Design: In this cross-sectional, observational study, milk was collected from a total of 410 healthy, breastfeeding women in 11 international cohorts and analyzed for HMOs by using high-performance liquid chromatography.Results: There was an effect of the cohort (P 4 times higher in milk collected in Sweden than in milk collected in rural Gambia (mean ± SEM: 473 ± 55 compared with 103 ± 16 nmol/mL, respectively; P < 0.05), and disialyllacto-N-tetraose (DSLNT) concentrations ranged from 216 ± 14 nmol/mL (in Sweden) to 870 ± 68 nmol/mL (in rural Gambia) (P < 0.05). Maternal age, time postpartum, weight, and body mass index were all correlated with several HMOs, and multiple differences in HMOs [e.g., lacto-N-neotetrose and DSLNT] were shown between ethnically similar (and likely genetically similar) populations who were living in different locations, which suggests that the environment may play a role in regulating the synthesis of HMOs.Conclusions: The results of this study support our hypothesis that normal HMO concentrations and profiles vary geographically, even in healthy women. Targeted genomic analyses are required to determine whether these differences are due at least in part to genetic variation. A careful examination of sociocultural, behavioral, and environmental factors is needed to determine their roles in this regard. This study was registered at clinicaltrials.gov as NCT02670278

    Key genetic variants associated with variation of milk oligosaccharides from diverse human populations

    Get PDF
    Human milk oligosaccharides (HMO), the third most abundant component of human milk, are thought to be important contributors to infant health. Studies have provided evidence that geography, stage of lactation, and Lewis and secretor blood groups are associated with HMO profile. However, little is known about how variation across the genome may influence HMO composition among women in various populations. In this study, we performed genome-wide association analyses of 395 women from 8 countries to identify genetic regions associated with 19 different HMO. Our data support FUT2 as the most significantly associated (P < 4.23-9 to P < 4.5-70) gene with seven HMO and provide evidence of balancing selection for FUT2. Although polymorphisms in FUT3 were also associated with variation in lacto-N-fucopentaose II and difucosyllacto-N-tetrose, we found little evidence of selection on FUT3. To our knowledge, this is the first report of the use of genome-wide association analyses on HMO

    Human milk immune factors, maternal nutritional status, and infant sex: The INSPIRE study

    Get PDF
    Breastfeeding is an energetically costly and intense form of human parental investment, providing sole-source nutrition in early infancy and bioactive components, including immune factors. Given the energetic cost of lactation, milk factors may be subject to tradeoffs, and variation in concentrations have been explored utilizing the Trivers-Willard hypothesis. As human milk immune factors are critical to developing immune system and protect infants against pathogens, we tested whether concentrations of milk immune factors (IgA, IgM, IgG, EGF, TGFβ2, and IL-10) vary in response to infant sex and maternal condition (proxied by maternal diet diversity [DD] and body mass index [BMI]) as posited in the Trivers-Willard hypothesis and consider the application of the hypothesis to milk composition.This study is supported with funds from the National Science Foundation's INSPIRE Track 1 Grant: What is Normal Milk? Sociocultural, Evolutionary, Environmental, and Microbial Aspects of Human Milk Composition (Award #1344288), National Institutes of Health NICHD R01 HD092297 and the US Department of Agriculture National Institute of Food and Agriculture, Hatch project IDA01643 and in-kind donations from Medela. We sincerely thank the Washington State University Health Equity Center for their support. Additionally, we thank Andrew Doel (Medical Research Council Unit, The Gambia) for field supervision and logistics planning and Alansan Sey for questionnaire administration and taking anthropometric measurements in The Gambia; Jane Odei (University of Ghana) for supervising field data collection in Ghana; Haile Belachew (Hawassa University), and Birhanu Sintayehu for planning and logistics and the administration and staff at Adare Hospital in Hawassa for assistance with logistics in Ethiopia; Catherine O. Sarange (Egerton University) for field supervision and logistics planning and Milka W. Churuge and Minne M. Gachau for recruiting, questionnaire administration, and taking anthropometric measurements in Kenya; Gisella Barbagelatta (Instituto de Investigación Nutricional) for field supervision and logistics planning, Patricia Calderon (Instituto de Investigación Nutricional) for recruiting, questionnaire administration, and taking anthropometric measurements, and Roxana Barrutia (Instituto de Investigación Nutricional) for the management and shipping of samples in Peru; Leónides Fernández, Cristina García-Carral and Irene Espinosa (Complutense University of Madrid) for technical assistance and expertise, and M. Ángeles Checa (Zaragoza, Spain), Katalina Legarra (Guernica, Spain), and Julia Mínguez (Huesca, Spain) for participation in the collection of samples in Spain; Kirsti Kaski and Maije Sjöstrand (both Helsingborg Hospital) for participation in the collection of samples, questionnaire administration, and anthropometric measurements in Sweden; Renee Bridge and Kara Sunderland (both University of California, San Diego); Janae Carrothers and Shelby Hix (Washington State University) for logistics planning, recruiting, questionnaire administration, sample collection, and taking anthropometric measurements in California and Washington; Glenn Miller (Washington State University) for his expertise and critical logistic help that were needed for shipping samples and supplies worldwide.Peer reviewe

    Isolation, establishment, and characterization of ex vivo equine melanoma cell cultures

    Full text link
    Gray horses spontaneously develop metastatic melanomas that resemble human disease, and this is often accompanied with metastasis to other organs. Unlike in other species, the establishment of primary equine melanoma cultures that could be used to develop new therapeutic approaches has remained a major challenge. The purpose of the study was to develop a protocol for routine isolation and cultivation of primary equine melanocytes. Melanoma tissues were excised from 13 horses under local anesthesia, mainly from the perianal area. The melanoma cells were isolated from the melanoma tissue by serial enzymatic digestion using dispase and collagenase. Out of the 13 excised melanomas, cell cultures from eight melanomas were established, which corresponded to a success rate 62%. These cells showed different degrees of melanin pigmentation. Characterization of these cells using confocal microscopy, FACs analysis and western blotting showed that they expressed melanoma-associated antigens; Melan-A, MAGE-1, and MAGE-3, and PCNA expression was higher in fast-proliferating isolates. The protocol we developed and established proved successful for routine isolation and cultivation of primary equine melanoma cells. This method provided a large number of primary equine melanoma cells that could be used to study new therapeutic approaches for treatment of equine melanomas

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore