2 research outputs found
Subcutaneous progesterone versus vaginal progesterone for luteal phase support in in vitro fertilization : A retrospective analysis from daily clinical practice
Objective: Progesterone application for luteal phase support is a well-established concept in in vitro fertilization (IVF) treatment. Water-soluble subcutaneous progesterone injections have shown pregnancy rates equivalent to those observed in patients receiving vaginal administration in randomized controlled trials. Our study aimed to investigate whether the results from those pivotal trials could be reproduced in daily clinical practice in an unselected patient population. Methods: In this retrospective cohort study in non-standardized daily clinical practice, we compared 273 IVF cycles from 195 women undergoing IVF at our center for luteal phase support with vaginal administration of 200 mg of micronized progesterone three times daily or subcutaneous injection of 25 mg of progesterone per day. Results: Various patient characteristics including age, weight, height, number of oocytes, and body mass index were similar between both groups. We observed no significant differences in the clinical pregnancy rate (CPR) per treatment cycle between the subcutaneous (39.9%) and vaginal group (36.5%) (p=0.630). Covariate analysis showed significant correlations of the number of transferred embryos and the total dosage of stimulation medication with the CPR. However, after adjustment of the CPR for these covariates using a regression model, no significant difference was observed between the two groups (odds ratio, 0.956; 95% confidence interval, 0.512-1.786; p=0.888). Conclusion: In agreement with randomized controlled trials in study populations with strict selection criteria, our study determined that subcutaneous progesterone was equally effective as vaginally applied progesterone in daily clinical practice in an unselected patient population.Peer reviewe
Point Mutations Throughout the GLI3 Gene Cause Greig Cephalopolysyndactyly Syndrome
Greig cephalopolysyndactyly syndrome, characterized by craniofacial and limb anomalies (GCPS; MIM 175700), previously has been demonstrated to be associated with translocations as well as point mutations affecting one allele of the zinc finger gene GLI3. In addition to GCPS, Pallister-Hall syndrome (PHS; MIM 146510) and post-axial polydactyly type A (PAP-A; MIM 174200), two other disorders of human development, are caused by GLI3 mutations. In order to gain more insight into the mutational spectrum associated with a single phenotype, we report here the extension of the GLI3 mutation analysis to 24 new GCPS cases. We report the identification of 15 novel mutations present in one of the patient's GLI3 alleles. The mutations map throughout the coding gene regions. The majority are truncating mutations (nine of 15) that engender prematurely terminated protein products mostly but not exclusively N-terminally to or within the central region encoding the DNA-binding domain. Two missense and two splicing mutations mapping within the zinc finger motifs presumably also interfere with DNA binding. The five mutations identified within the protein regions C-terminal to the zinc fingers putatively affect additional functional properties of GLI3. In cell transfection experiments using fusions of the DNA-binding domain of yeast GAL4 to different segments of GLI3, transactivating capacity was assigned to two adjacent independent domains (TA1 and TA2) in the C-terminal third of GLI3. Since these are the only functional domains affected by three C-terminally truncating mutations, we postulate that GCPS may be due either to haploinsufficiency resulting from the complete loss of one gene copy or to functional haploinsufficiency related to compromised properties of this transcription factor such as DNA binding and transactivatio