509 research outputs found

    Bidirectional Heuristic Search Reconsidered

    Full text link
    The assessment of bidirectional heuristic search has been incorrect since it was first published more than a quarter of a century ago. For quite a long time, this search strategy did not achieve the expected results, and there was a major misunderstanding about the reasons behind it. Although there is still wide-spread belief that bidirectional heuristic search is afflicted by the problem of search frontiers passing each other, we demonstrate that this conjecture is wrong. Based on this finding, we present both a new generic approach to bidirectional heuristic search and a new approach to dynamically improving heuristic values that is feasible in bidirectional search only. These approaches are put into perspective with both the traditional and more recently proposed approaches in order to facilitate a better overall understanding. Empirical results of experiments with our new approaches show that bidirectional heuristic search can be performed very efficiently and also with limited memory. These results suggest that bidirectional heuristic search appears to be better for solving certain difficult problems than corresponding unidirectional search. This provides some evidence for the usefulness of a search strategy that was long neglected. In summary, we show that bidirectional heuristic search is viable and consequently propose that it be reconsidered.Comment: See http://www.jair.org/ for any accompanying file

    Age-related increase of kynurenic acid in human cerebrospinal fluid-IgG and beta(2)-microglobulin changes

    Get PDF
    Kynurenic acid (KYNA) is an endogenous metabolite in the kynurenine pathway of tryptophan degradation and is an antagonist at the glycine site of the N-methyl-D-aspartate as well as at the alpha 7 nicotinic cholinergic receptors. In the brain tissue KYNA is synthesised from L-kynurenine by kynurenine aminotransferases (KAT) I and II. A host of immune mediators influence tryptophan degradation. In the present study, the levels of KYNA in cerebrospinal fluid (CSF) and serum in a group of human subjects aged between 25 and 74 years were determined by using a high performance liquid chromatography method. In CSF and serum KAT I and II activities were investigated by radioenzymatic assay, and the levels of Ī²2-microglobulin, a marker for cellular immune activation, were determined by ELISA. The correlations between neurochemical and biological parameters were evaluated. Two subject groups with significantly different ages, i.e. 50 years, p < 0.001, showed statistically significantly different CSF KYNA levels, i.e. 2.84 Ā± 0.16 fmol/Ī¼l vs. 4.09 Ā± 0.14 fmol/Ī¼l, p < 0.001, respectively; but this difference was not seen in serum samples. Interestingly, KYNA is synthesised in CSF principally by KAT I and not KAT II, however no relationship was found between enzyme activity and ageing. A positive relationship between CSF KYNA levels and age of subjects indicates a 95% probability of elevated CSF KYNA with ageing (R = 0.6639, p = 0.0001). KYNA levels significantly correlated with IgG and Ī²2-microglobulin levels (R = 0.5244, p = 0.0049; R = 0.4253, p = 0.043, respectively). No correlation was found between other biological parameters in CSF or serum. In summary, a positive relationship between the CSF KYNA level and ageing was found, and the data would suggest age-dependent increase of kynurenine metabolism in the CNS. An enhancement of CSF IgG and Ī²2-microglobulin levels would suggest an activation of the immune system during ageing. Increased KYNA metabolism may be involved in the hypofunction of the glutamatergic and/or nicotinic cholinergic neurotransmission in the ageing CNS

    Detecting outliers with foreign patch interpolation

    Get PDF
    In medical imaging, outliers can contain hypo/hyper-intensities, minor deformations, or completely altered anatomy. To detect these irregularities it is helpful to learn the features present in both normal and abnormal images. However this is difficult because of the wide range of possible abnormalities and also the number of ways that normal anatomy can vary naturally. As such, we leverage the natural variations in normal anatomy to create a range of synthetic abnormalities. Specifically, the same patch region is extracted from two independent samples and replaced with an interpolation between both patches. The interpolation factor, patch size, and patch location are randomly sampled from uniform distributions. A wide residual encoder decoder is trained to give a pixel-wise prediction of the patch and its interpolation factor. This encourages the network to learn what features to expect normally and to identify where foreign patterns have been introduced. The estimate of the interpolation factor lends itself nicely to the derivation of an outlier score. Meanwhile the pixel-wise output allows for pixel- and subject- level predictions using the same model. Our code is available at https://github.com/jemtan/FP

    Mortality in renal transplant recipients given erythropoietins to increase haemoglobin concentration: cohort study

    Get PDF
    Objective To determine the optimal range of increase in haemoglobin concentration with treatment with erythropoietins that is safe and is not associated with mortality

    Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models

    Get PDF
    Joint kinematics can be calculated by Direct Kinematics (DK), which is used in most clinical gait laboratories, or Inverse Kinematics (IK), which is mainly used for musculoskeletal research. In both approaches, joint centre locations are required to compute joint angles. The hip joint centre (HJC) in DK models can be estimated using predictive or functional methods, while in IK models can be obtained by scaling generic models. The aim of the current study was to systematically investigate the impact of HJC location errors on lower limb joint kinematics of a clinical population using DK and IK approaches. Subject-specific kinematic models of eight children with cerebral palsy were built from magnetic resonance images and used as reference models. HJC was then perturbed in 6mm steps within a 60mm cubic grid, and kinematic waveforms were calculated for the reference and perturbed models. HJC perturbations affected only hip and knee joint kinematics in a DK framework, but all joint angles were affected when using IK. In the DK model, joint constraints increased the sensitivity of joint range-of-motion to HJC location errors. Mean joint angle offsets larger than 5Ā° were observed for both approaches (DK and IK), which were larger than previously reported for healthy adults. In the absence of medical images to identify the HJC, predictive or functional methods with small errors in anterior-posterior and medial-lateral directions and scaling procedures minimizing HJC location errors in the anterior-posterior direction should be chosen to minimize the impact on joint kinematics

    Langzeituntersuchung der Kohlenstoff- und StickstoffkreislƤufe eines intensiven ƶkologischen Betriebssystems ā€“ am Beispiel des Versuchsgutes Scheyern

    Get PDF
    Carbon, nitrogen and energy flows are considered as an appropriate basis to characterize farming systems and to evaluate the environmental effects. Using the model REPRO the carbon and nitrogen flows of the experimental farm ā€œKlostergut Scheyernā€ have been evaluated since 1991 on the basis of complete cultivation data as well as with the help of detailed site and weather data. Thus ā€œScheyernā€ is characterised as an intensive organic farming system with a high turnover of C and N

    Uncertainty quantification in non-rigid image registration via stochastic gradient Markov chain Monte Carlo

    Get PDF
    We develop a new Bayesian model for non-rigid registration of three-dimensional medical images, with a focus on uncertainty quantification. Probabilistic registration of large images with calibrated uncertainty estimates is difficult for both computational and modelling reasons. To address the computational issues, we explore connections between the Markov chain Monte Carlo by backpropagation and the variational inference by backpropagation frameworks, in order to efficiently draw samples from the posterior distribution of transformation parameters. To address the modelling issues, we formulate a Bayesian model for image registration that overcomes the existing barriers when using a dense, high-dimensional, and diffeomorphic transformation parametrisation. This results in improved calibration of uncertainty estimates. We compare the model in terms of both image registration accuracy and uncertainty quantification to VoxelMorph, a state-of-the-art image registration model based on deep learning

    DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks

    Get PDF
    In this paper, we propose DeepCut, a method to obtain pixelwise object segmentations given an image dataset labelled with bounding box annotations. It extends the approach of the well-known GrabCut method to include machine learning by training a neural network classifier from bounding box annotations. We formulate the problem as an energy minimisation problem over a densely-connected conditional random field and iteratively update the training targets to obtain pixelwise object segmentations. Additionally, we propose variants of the DeepCut method and compare those to a naive approach to CNN training under weak supervision. We test its applicability to solve brain and lung segmentation problems on a challenging fetal magnetic resonance dataset and obtain encouraging results in terms of accuracy
    • ā€¦
    corecore