681 research outputs found

    Evolution of column density distributions within Orion~A

    Full text link
    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus) by Sadavoy; here we test if a similar correlation is observed in a high-mass star-forming region. We use Herschel data to derive a column density map of Orion A. We use the Herschel Orion Protostar Survey catalog for accurate identification and classification of the Orion A young stellar object (YSO) content, including the short-lived Class 0 protostars (with a ∼\sim 0.14 Myr lifetime). We divide Orion A into eight independent 13.5 pc2^2 regions; in each region we fit the N-PDF distribution with a power-law, and we measure the fraction of Class 0 protostars. We use a maximum likelihood method to measure the N-PDF power-law index without binning. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We test the effects of incompleteness, YSO misclassification, resolution, and pixel-scale. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an "evolutionary state" of the gas. If universal, such a relation permits an evaluation of the evolutionary state from the N-PDF power-law index at much greater distances than those accesible with protostar counts. (abridged)Comment: A&A Letter, accepte

    Astrophysical and Cosmological Constraints on Neutrino masses

    Full text link
    We review some astrophysical and cosmological properties and implications of neutrino masses and mixing angles. These include: constraints based on the relic density of neutrinos, limits on their masses and lifetimes, BBN limits on mass parameters, neutrinos and supernovae, and neutrinos and high energy cosmic rays.Comment: 23 pages, latex, 9 eps figures, added reference

    Electroweak Baryogenesis in a Supersymmetric U(1)' Model

    Full text link
    We construct an anomaly free supersymmetric U(1)' model with a secluded U(1)'-breaking sector. We study the one-loop effective potential at finite temperature, and show that there exists a strong enough first order electroweak phase transition for electroweak baryogenesis (EWBG) because of the large trilinear term AhhSHdHuA_h h S H_d H_u in the tree-level Higgs potential. Unlike in the MSSM, the lightest stop can be very heavy. We consider the non-local EWBG mechanism in the thin wall regime, and find that within uncertainties the observed baryon number can be generated from the Ï„\tau lepton contribution, with the secluded sector playing an essential role. The chargino and neutralino contributions and the implications for the Z' mass and electric dipole moments are briefly discussed.Comment: RevTex, 4 pages, 2 figures, references added, version to appear in PR

    The interior spacetimes of stars in Palatini f(R) gravity

    Full text link
    We study the interior spacetimes of stars in the Palatini formalism of f(R) gravity and derive a generalized Tolman-Oppenheimer-Volkoff and mass equation for a static, spherically symmetric star. We show that matching the interior solution with the exterior Schwarzschild-De Sitter solution in general gives a relation between the gravitational mass and the density profile of a star, which is different from the one in General Relativity. These modifications become neglible in models for which δF(R)≡∂f/∂R−1\delta F(R) \equiv \partial f/\partial R - 1 is a decreasing function of R however. As a result, both Solar System constraints and stellar dynamics are perfectly consistent with f(R)=R−μ4/Rf(R) = R - \mu^4/R.Comment: Published version, 6 pages, 1 figur

    High-fidelity view of the structure and fragmentation of the high-mass, filamentary IRDC G11.11-0.12

    Get PDF
    Star formation in molecular clouds is intimately linked to their internal mass distribution. We present an unprecedentedly detailed analysis of the column density structure of a high-mass, filamentary molecular cloud, namely IRDC G11.11-0.12 (G11). We use two novel column density mapping techniques: high-resolution (FWHM=2", or ~0.035 pc) dust extinction mapping in near- and mid-infrared, and dust emission mapping with the Herschel satellite. These two completely independent techniques yield a strikingly good agreement, highlighting their complementarity and robustness. We first analyze the dense gas mass fraction and linear mass density of G11. We show that G11 has a top heavy mass distribution and has a linear mass density (M_l ~ 600 Msun pc^{-1}) that greatly exceeds the critical value of a self-gravitating, non-turbulent cylinder. These properties make G11 analogous to the Orion A cloud, despite its low star-forming activity. This suggests that the amount of dense gas in molecular clouds is more closely connected to environmental parameters or global processes than to the star-forming efficiency of the cloud. We then examine hierarchical fragmentation in G11 over a wide range of size-scales and densities. We show that at scales 0.5 pc > l > 8 pc, the fragmentation of G11 is in agreement with that of a self-gravitating cylinder. At scales smaller than l < 0.5 pc, the results agree better with spherical Jeans' fragmentation. One possible explanation for the change in fragmentation characteristics is the size-scale-dependent collapse time-scale that results from the finite size of real molecular clouds: at scales l < 0.5 pc, fragmentation becomes sufficiently rapid to be unaffected by global instabilities.Comment: 8 pages, 8 figures, accepted to A&

    The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

    Full text link
    Filaments play a central role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in 13^{13}CO and C18^{18}O (2--1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its ∼\sim6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e., σNT/cs≲1\sigma_{NT}/c_s\lesssim1) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the ISM. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales.Comment: 12 pages, 6 figures; Accepted for publication in A&

    Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    Full text link
    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 micron data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with HII regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and HII regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes.Comment: Accepted for publication in A&A (25th June 15) 23 pages, 12 figures. Additional appendix figures will appear in the journal version of this pape

    Conformal Window of Gauge Theories with Four-Fermion Interactions and Ideal Walking

    Full text link
    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four-fermion interactions are neglected. The anomalous dimension of the mass increases beyond the unity value at the lower boundary of the new conformal window. We plot the new phase diagram which can be used, together with the information about the anomalous dimension, to propose ideal models of walking technicolor. We discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show that the simplest one family and minimal walking technicolor models are the archetypes of models of dynamical electroweak symmetry breaking. Our predictions can be verified via first principle lattice simulations.Comment: RevTeX4, 22 pages, 16 figure
    • …
    corecore