1,537 research outputs found
Characterization of the exopolysaccharide produced by a whey utilizing strain of Klebsiella oxytoca
Physical, chemical and rheological properties of a polysaccharide produced by an isolate of Klebsiella oxytoca were characterized. Freeze dried samples of the polysaccharide were neutral and werecompletely soluble in water. Samples did not form gels even in the presence of salt treatments. The major monosaccharide constituents of the polysaccharide were rhamnose (37%, w/w) and glucose(34%, w/w). Residues of cellobiose were detected, suggesting that the polysaccharide had a cellulose backbone. The gum was more comparable to broth apparent viscosities of xanthan gum than to gellangum. The K. oxytoca polysaccharide (KOP) produced high solution viscosity at low concentrations. At a gum concentration 0.5% (w/v), an apparent viscosity of 400 cP at 24 s-1 was obtained. Rheologicalbehavior showed that the KOP formed non newtonian fluids, indicating that it is a pseudoplastic biopolymer. Although the KOP solutions displayed pseudoplastic behavior, increases in shearing timedid not result in significant changes on the apparent viscosity. This indicated that the gum is neither thixotropic nor rheopectic. The conclusion reached about the potential application of the gum was thatit could be suitable for use as a stabilizing or suspending agent rather than a gelling agent
Physiological protection of probiotic microcapsules by coatings
Nowadays, food and nutrition have a greater impact in people's concerns, with the awareness that nutrition have a direct impact in health and wellbeing. Probiotics have an important role in this topic and consumers are starting to really understand their potential in health, leading to an increasing interest of the companies to their commercial use in foods. However, there are several limitations to the use of probiotics in foods and beverages, being one of them their efficiency (directly associated to their survival rate) upon ingestion.
This work is focused in microencapsulation techniques that have been used to increase probiotics efficiency. More specifically, this work reviews the most recent and relevant research about the production and coating techniques of probiotic-loaded microcapsules, providing an insight in the effect of these coatings in probiotics survival during the gastrointestinal phase.
This review shows that coatings with the better performances in probiotics protection, against the harsh conditions of digestion, are chitosan, alginate, poly-L-lysine and whey protein. Chitosan presented an interesting performance in probiotics protection being able to maintain the initial concentration of viable probiotics during a digestive test. The analyses of different works also showed that the utilization of several coatings does not guarantee a better protection in comparison with monocoated microcapsules.The author Philippe E. Ramos is recipient of fellowships from the Fundação para a Ciência e Tecnologia, POPH-QREN and FSE (FCT, Portugal) through the grant SFRH/BD/80800/2012. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). RECI Project (Until December of 2017): This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the Project RECI/BBBEBI/0179/2012 (FCOMP-01-0124-FEDER-027462).info:eu-repo/semantics/publishedVersio
Effect of guar gum on the physicochemical, thermal, rheological and textural properties of green edam cheese
In attempts to produce a low-fat cheese with a rheology and texture similar to that of a full-fat cheese, guar gum (within 0.0025–0.01%; w/v, final concentration) was added to low-fat milk. The obtained cheeses were characterised regarding their physicochemical, thermal, rheological and textural properties. Control cheeses were also produced with low and full-fat milk. The physicochemical properties of the guar gum modified cheeses were similar to those of the low-fat control. No significant differences were detected in the thermal properties (concerning the enthalpy and profile of water desorption) among all types of cheeses. The rheological behaviour of the 0.0025% modified cheese was very similar to the full-fat control. Overall, no trend was observed in the texture profile (hardness, cohesiveness, gumminess and elasticity) of the modified cheeses versus guar gum concentration, as well as in comparison with the control groups, suggesting that none of the studied polysaccharide concentrations simulated the textural functions of fat in Edam cheese
Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation
The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7 of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil.
The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, p = 0.42% with detector HV OFF and p < 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure
Triple-GEM discharge probability studies at CHARM: Simulations and experimental results
The CMS muon system in the region with 2.03<|η|<2.82 is characterized by a very harsh radiation environment which can generate hit rates up to 144 kHz/cm and an integrated charge of 8 C/cm over ten years of operation. In order to increase the detector performance and acceptance for physics events including muons, a new muon station (ME0) has been proposed for installation in that region. The technology proposed is Triple—Gas Electron Multiplier (Triple-GEM), which has already been qualified for the operation in the CMS muon system. However, an additional set of studies focused on the discharge probability is necessary for the ME0 station, because of the large radiation environment mentioned above. A test was carried out in 2017 at the Cern High energy AcceleRator Mixed (CHARM) facility, with the aim of giving an estimation of the discharge probability of Triple-GEM detectors in a very intense radiation field environment, similar to the one of the CMS muon system. A dedicated standalone Geant4 simulation was performed simultaneously, to evaluate the behavior expected in the detector exposed to the CHARM field. The geometry of the detector has been carefully reproduced, as well as the background field present in the facility. This paper presents the results obtained from the Geant4 simulation, in terms of sensitivity of the detector to the CHARM environment, together with the analysis of the energy deposited in the gaps and of the processes developed inside the detector. The discharge probability test performed at CHARM will be presented, with a complete discussion of the results obtained, which turn out to be consistent with measurements performed by other groups
Benchmarking LHC background particle simulation with the CMS triple-GEM detector
In 2018, a system of large-size triple-GEM demonstrator chambers was installed in the CMS experiment at CERN\u27s Large Hadron Collider (LHC). The demonstrator\u27s design mimicks that of the final detector, installed for Run-3. A successful Monte Carlo (MC) simulation of the collision-induced background hit rate in this system in proton-proton collisions at 13 TeV is presented. The MC predictions are compared to CMS measurements recorded at an instantaneous luminosity of 1.5 ×10 cm s. The simulation framework uses a combination of the FLUKA and GEANT4 packages. FLUKA simulates the radiation environment around the GE1/1 chambers. The particle flux by FLUKA covers energy spectra ranging from 10 to 10 MeV for neutrons, 10 to 10 MeV for γ\u27s, 10 to 10 MeV for e, and 10 to 10 MeV for charged hadrons. GEANT4 provides an estimate of the detector response (sensitivity) based on an accurate description of the detector geometry, the material composition, and the interaction of particles with the detector layers. The detector hit rate, as obtained from the simulation using FLUKA and GEANT4, is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties in the range 13.7-14.5%. This simulation framework can be used to obtain a reliable estimate of the background rates expected at the High Luminosity LHC
Modeling the triple-GEM detector response to background particles for the CMS Experiment
An estimate of environmental background hit rate on triple-GEM chambers is
performed using Monte Carlo (MC) simulation and compared to data taken by test
chambers installed in the CMS experiment (GE1/1) during Run-2 at the Large
Hadron Collider (LHC). The hit rate is measured using data collected with
proton-proton collisions at 13 TeV and a luminosity of 1.5
cm s. The simulation framework uses a combination of the FLUKA
and Geant4 packages to obtain the hit rate. FLUKA provides the radiation
environment around the GE1/1 chambers, which is comprised of the particle flux
with momentum direction and energy spectra ranging from to
MeV for neutrons, to MeV for 's, to
MeV for , and to MeV for charged hadrons.
Geant4 provides an estimate of detector response (sensitivity) based on an
accurate description of detector geometry, material composition and interaction
of particles with the various detector layers. The MC simulated hit rate is
estimated as a function of the perpendicular distance from the beam line and
agrees with data within the assigned uncertainties of 10-14.5%. This simulation
framework can be used to obtain a reliable estimate of background rates
expected at the High Luminosity LHC.Comment: 16 pages, 9 figures, 6 table
- …