660 research outputs found

    Co-Oxidative Transformation of Piperine to Piperonal and 3,4-Methylenedioxycinnamaldehyde by a Lipoxygenase from Pleurotus sapidus

    Get PDF
    The valuable aroma compound piperonal with its vanilla-like olfactory properties is of high interest for the fragrance and flavor industry. A lipoxygenase (LOXPsa1) of the basidiomycete Pleurotus sapidus was identified to convert piperine, the abundant pungent principle of black pepper (Piper nigrum), to piperonal and a second volatile product, 3,4-methylenedioxycinnamaldehyde, with a vanilla-like odor through an alkene cleavage. The reaction principle was co-oxidation, as proven by its dependence on the presence of linoleic or α-linolenic acid, common substrates of lipoxygenases. Optimization of the reaction conditions (substrate concentrations, reaction temperature and time) led to a 24-fold and 15-fold increase of the piperonal and 3,4-methylenedioxycinnamaldehyde concentration using the recombinant enzyme. Monokaryotic strains showed different concentrations of and ratios between the two reaction products

    Responses of multiple structural and functional indicators along three contrasting disturbance gradients

    Get PDF
    Ecosystem functioning and community structure are recognized as key components of ecosystem integrity, but comprehensive, standardized studies of the responses of both structural and functional indicators to different types of anthropogenic pressures remain rare. Consequently, we lack an empirical basis for (i) identifying when monitoring ecosystem structure alone misses important changes in ecosystem functioning, (ii) recommending sets of structural and functional metrics best suited for detecting ecological change driven by different anthropogenic pressures, and (iii) understanding the cumulative effects of multiple, co-occurring stressors on structure and function. We investigated variation in community structure and ecosystem functioning of stream ecosystems along three gradients (10–16 independent stream sites each) of increasing impact arising from agriculture, forestry and river regulation for hydropower, respectively. For each stream, we quantified variation in (i) the abiotic environment, (ii) community composition of four organism groups and (iii) three basal ecosystem processes underpinning carbon and nutrient cycling in streams. We assessed the responsiveness of multiple biodiversity, community structure and ecosystem functioning indicators based on variance explained and effect size metrics. Along a gradient of increasing agricultural impact, diatoms and fish were the most responsive groups overall, but significant variation was detected in at least one aspect of community composition, abundance and/ or biodiversity of every organism group . In contrast, most of our functional metrics did not vary significantly along the agricultural gradient, possibly due to contrasting, antagonistic effects of increasing nutrient concentrations and turbidity on ecosystem process rates. The exception was detritivore-mediated litter decomposition which increased up to moderate levels of nutrient. Impacts of river regulation were most marked for diatoms, which were responsive to both increasingly frequent hydropeaking and to increasing seasonal river regulation. Among functional indicators, both litter decomposition and algal biomass accrual declined significantly with increasing hydropeaking. Few structural or functional metrics varied with forest management, with macroinvertebrate diversity increasing along the forestry gradient, as did algal and fungal biomass accrual. Together, these findings highlight the challenges of making inferences about the impacts of anthropogenic disturbances at the ecosystem level based on community data alone, and pinpoint the need to identify optimal sets of functional and structural indicators best suited for detecting ecological changes associated with different human activities

    Responses of multiple structural and functional indicators along three contrasting disturbance gradients

    Get PDF
    Ecosystem functioning and community structure are recognized as key components of ecosystem integrity, but comprehensive, standardized studies of the responses of both structural and functional indicators to different types of anthropogenic pressures remain rare. Consequently, we lack an empirical basis for (i) identifying when monitoring ecosystem structure alone misses important changes in ecosystem functioning, (ii) recommending sets of structural and functional metrics best suited for detecting ecological change driven by different anthropogenic pressures, and (iii) understanding the cumulative effects of multiple, co-occurring stressors on structure and function. We investigated variation in community structure and ecosystem functioning of stream ecosystems along three gradients (10-16 independent stream sites each) of increasing impact arising from agriculture, forestry and river regulation for hydropower, respectively. For each stream, we quantified variation in (i) the abiotic environment, (ii) community composition of four organism groups and (iii) three basal ecosystem processes underpinning carbon and nutrient cycling in streams. We assessed the responsiveness of multiple biodiversity, community structure and ecosystem functioning indicators based on variance explained and effect size metrics. Along a gradient of increasing agricultural impact, diatoms and fish were the most responsive groups overall, but significant variation was detected in at least one aspect of community composition, abundance and/ or biodiversity of every organism group . In contrast, most of our functional metrics did not vary significantly along the agricultural gradient, possibly due to contrasting, antagonistic effects of increasing nutrient concentrations and turbidity on ecosystem process rates. The exception was detritivore-mediated litter decomposition which increased up to moderate levels of nutrient. Impacts of river regulation were most marked for diatoms, which were responsive to both increasingly frequent hydropeaking and to increasing seasonal river regulation. Among functional indicators, both litter decomposition and algal biomass accrual declined significantly with increasing hydropeaking. Few structural or functional metrics varied with forest management, with macroinvertebrate diversity increasing along the forestry gradient, as did algal and fungal biomass accrual. Together, these findings highlight the challenges of making inferences about the impacts of anthropogenic disturbances at the ecosystem level based on community data alone, and pinpoint the need to identify optimal sets of functional and structural indicators best suited for detecting ecological changes associated with different human activities

    Unintended consequences of drug policies experienced by young drug users in contact with the criminal justice systems

    Get PDF
    The aim of this paper is to assess to what extent prohibitive drug policies hamper the management of drug problems from the perspective of young people who have experience with the criminal justice systems (CJS). Qualitative, in-depth interviews were carried out in six European countries (Austria, Denmark, Germany, Italy, Poland, and the UK) following a common interview guide to obtain comparative data on the life trajectories of drug experienced youth. Altogether 198 interviews with people aged 14–25 years were collected and analysed by national teams following a common coding book. Unintended consequences of drug policies for the individual and society were identified. Individual consequences included health consequences and traumatic experiences with law enforcement. Social consequences included those affecting social relations such as stigmatisation and those impacting on institutions, for example, focusing on drug use and neglecting other problems. This paper confirmed earlier research indicating unintended consequences of prohibitive drug policies but also added to the literature its cross-national perspective and use of young people narratives as a source of analyses. There are, however, policy measures available that may reduce the volume and range of unintended effects. Their implementation is crucial to reduce the array of unintended consequences of prohibitive drug policies

    Redundancy in the ecological assessment of lakes: Are phytoplankton, macrophytes and phytobenthos all necessary?

    Get PDF
    Although the Water Framework Directive specifies that macrophytes and phytobenthos should be used for the ecological assessment of lakes and rivers, practice varies widely throughout the EU. Most countries have separate methods for macrophytes and phytobenthos in rivers; however, the situation is very different for lakes. Here, 16 countries do not have dedicated phytobenthos methods, some include filamentous algae within macrophyte survey methods whilst others use diatoms as proxies for phytobenthos. The most widely-cited justification for not having a dedicated phytobenthos method is redundancy, i.e. that macrophyte and phytoplankton assessments alone are sufficient to detect nutrient impacts. Evidence from those European Union Member States that have dedicated phytobenthos methods supports this for high level overviews of lake condition and classification; however, there are a number of situations where phytobenthos may contribute valuable information for the management of lakes

    The quorum sensing com system regulates pneumococcal colonisation and invasive disease in a pseudo-stratified airway tissue model.

    Get PDF
    BACKGROUND The effects of the com quorum sensing system during colonisation and invasion of Streptococcus pneumoniae (Spn) are poorly understood. METHODS We developed an ex vivo model of differentiated human airway epithelial (HAE) cells with beating ciliae, mucus production and tight junctions to study Spn colonisation and translocation. HAE cells were inoculated with Spn wild-type TIGR4 (wtSpn) or its isogenic ΔcomC quorum sensing-deficient mutant. RESULTS Colonisation density of ΔcomC mutant was lower after 6 h but higher at 19 h and 30 h compared to wtSpn. Translocation correlated inversely with colonisation density. Transepithelial electric resistance (TEER) decreased after pneumococcal inoculation and correlated with increased translocation. Confocal imaging illustrated prominent microcolony formation with wtSpn but disintegration of microcolony structures with ΔcomC mutant. ΔcomC mutant showed greater cytotoxicity than wtSpn, suggesting that cytotoxicity was likely not the mechanism leading to translocation. There was greater density- and time-dependent increase of inflammatory cytokines including NLRP3 inflammasome-related IL-18 after infection with ΔcomC compared with wtSpn. ComC inactivation was associated with increased pneumolysin expression. CONCLUSIONS ComC system allows a higher organisational level of population structure resulting in microcolony formation, increased early colonisation and subsequent translocation. We propose that ComC inactivation unleashes a very different and possibly more virulent phenotype that merits further investigation

    Excited states of linear polyenes

    Full text link
    We present density matrix renormalisation group calculations of the Pariser- Parr-Pople-Peierls model of linear polyenes within the adiabatic approximation. We calculate the vertical and relaxed transition energies, and relaxed geometries for various excitations on long chains. The triplet (3Bu+) and even- parity singlet (2Ag+) states have a 2-soliton and 4-soliton form, respectively, both with large relaxation energies. The dipole-allowed (1Bu-) state forms an exciton-polaron and has a very small relaxation energy. The relaxed energy of the 2Ag+ state lies below that of the 1Bu- state. We observe an attraction between the soliton-antisoliton pairs in the 2Ag+ state. The calculated excitation energies agree well with the observed values for polyene oligomers; the agreement with polyacetylene thin films is less good, and we comment on the possible sources of the discrepencies. The photoinduced absorption is interpreted. The spin-spin correlation function shows that the unpaired spins coincide with the geometrical soliton positions. We study the roles of electron-electron interactions and electron-lattice coupling in determining the excitation energies and soliton structures. The electronic interactions play the key role in determining the ground state dimerisation and the excited state transition energies.Comment: LaTeX, 15 pages, 9 figure

    Heterogenous humoral and cellular immune responses with distinct trajectories post-SARS-CoV-2 infection in a population-based cohort.

    Get PDF
    To better understand the development of SARS-CoV-2-specific immunity over time, a detailed evaluation of humoral and cellular responses is required. Here, we characterize anti-Spike (S) IgA and IgG in a representative population-based cohort of 431 SARS-CoV-2-infected individuals up to 217 days after diagnosis, demonstrating that 85% develop and maintain anti-S responses. In a subsample of 64 participants, we further assess anti-Nucleocapsid (N) IgG, neutralizing antibody activity, and T cell responses to Membrane (M), N, and S proteins. In contrast to S-specific antibody responses, anti-N IgG levels decline substantially over time and neutralizing activity toward Delta and Omicron variants is low to non-existent within just weeks of Wildtype SARS-CoV-2 infection. Virus-specific T cells are detectable in most participants, albeit more variable than antibody responses. Cluster analyses of the co-evolution of antibody and T cell responses within individuals identify five distinct trajectories characterized by specific immune patterns and clinical factors. These findings demonstrate the relevant heterogeneity in humoral and cellular immunity to SARS-CoV-2 while also identifying consistent patterns where antibody and T cell responses may work in a compensatory manner to provide protection

    Biomarkers in Liquid Biopsies for Prediction of Early Liver Metastases in Pancreatic Cancer

    Get PDF
    Individualized diagnostics approaches in modern cancer therapy require predictive and prognostic biomarkers that are easily accessible and stratify patients for optimal and individualized treatment. Pancreatic ductal adenocarcinoma (PDAC) is still a life-threatening disease mainly because of its late diagnosis in advanced stages or rapid progress even in patients with curative resection of the primary tumor. Moreover, patients with liver metastases exhibit an even worse prognosis. Hence, this retrospective multi-center study aims to identify biomarkers in perioperative serum of PDAC patients predicting early liver metastasis. A highly sensitive biomarker analysis was performed using two different methodological approaches. Olink® analysis, which was also used to validate LEGENDplexTM results, identified significant differences in proteins involved in chemotaxis and migration of immune cells as well as cell growth in serum of patients with early versus late onset of liver metastasis. Further studies with larger cohorts are required to validate these findings for clinical translation

    Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducible analyses

    Get PDF
    The utility of patient-derived tumor cell lines as experimental models for glioblastoma has been challenged by limited representation of the in vivo tumor biology and low clinical translatability. Here, we report on longitudinal epigenetic and transcriptional profiling of seven glioblastoma spheroid cell line models cultured over an extended period. Molecular profiles were associated with drug response data obtained for 231 clinically used drugs. We show that the glioblastoma spheroid models remained molecularly stable and displayed reproducible drug responses over prolonged culture times of 30 in vitro passages. Integration of gene expression and drug response data identified predictive gene signatures linked to sensitivity to specific drugs, indicating the potential of gene expression-based prediction of glioblastoma therapy response. Our data thus empowers glioblastoma spheroid disease modeling as a useful preclinical assay that may uncover novel therapeutic vulnerabilities and associated molecular alterations
    corecore