853 research outputs found
Spin and lattice excitations of a BiFeO3 thin film and ceramics
We present a comprehensive study of polar and magnetic excitations in BiFeO3
ceramics and a thin film epitaxially grown on an orthorhombic (110) TbScO3
substrate. Infrared reflectivity spectroscopy was performed at temperatures
from 5 to 900 K for the ceramics and below room temperature for the thin film.
All 13 polar phonons allowed by the factor-group analysis were observed in
theceramic samples. The thin-film spectra revealed 12 phonon modes only and an
additional weak excitation, probably of spin origin. On heating towards the
ferroelectric phase transition near 1100 K, some phonons soften, leading to an
increase in the static permittivity. In the ceramics, terahertz transmission
spectra show five low-energy magnetic excitations including two which were not
previously known to be infrared active; at 5 K, their frequencies are 53 and 56
cm-1. Heating induces softening of all magnetic modes. At a temperature of 5 K,
applying an external magnetic field of up to 7 T irreversibly alters the
intensities of some of these modes. The frequencies of the observed spin
excitations provide support for the recently developed complex model of
magnetic interactions in BiFeO3 (R.S. Fishman, Phys. Rev. B 87, 224419 (2013)).
The simultaneous infrared and Raman activity of the spin excitations is
consistent with their assignment to electromagnons
Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility
The paper presents a time-domain finite-element solver developed for simulations related to solving electromagnetic compatibility issues. The software is applied as a module integrated into a computational framework developed within a FP7 European project High Intensity Radiated Field â Synthetic Environment (HIRF SE) able to simulate a large class of problems. In the paper, the mathematical formulation is briefly presented, and special emphasis is put on the user point of view on the simulation tool-chain. The functionality is demonstrated on the computation of shielding effectiveness of two composite materials. Results are validated through experimental measurements and agreement is confirmed by automatic feature selective algorithms
High-temperature phase transitions in SrBi_2Ta_2O_9 film: a study by THz spectroscopy
Time-domain THz transmission experiment was performed on a film deposited on sapphire substrate. Temperatures between 300
and 923 K were investigated and complex permittivity spectra of the film were
determined. The lowest frequency optic phonon near 28 cm reveals a slow
monotonic decrease in frequency on heating with no significant anomaly near the
phase transitions. We show that the dielectric anomaly near the ferroelectric
phase transition can be explained by slowing down of a relaxational mode,
observed in the THz spectra. A second harmonic generation signal observed in a
single crystal confirms a loss of center of symmetry in the ferroelectric phase
and a presence of polar clusters in the intermediate ferroelastic phase.Comment: subm. to J. Phys.: Condens. Matte
From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors.
Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry
Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3
Terahertz and far-infrared electric and magnetic responses of hexagonal
piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic
resonance is observed in the spectra of magnetic permeability mu_a [H(omega)
oriented within the hexagonal plane] below the Neel temperature T_N. This
excitation softens from 41 to 32 cm-1 on heating and finally disappears above
T_N. An additional weak and heavily-damped excitation is seen in the spectra of
complex dielectric permittivity epsilon_c within the same frequency range. This
excitation contributes to the dielectric spectra in both antiferromagnetic and
paramagnetic phases. Its oscillator strength significantly increases on heating
towards room temperature thus providing evidence of piezomagnetic or
higher-order couplings to polar phonons. Other heavily-damped dielectric
excitations are detected near 100 cm-1 in the paramagnetic phase in both
epsilon_c and epsilon_a spectra and they exhibit similar temperature behavior.
These excitations appearing in the frequency range of magnon branches well
below polar phonons could remind electromagnons; however, their temperature
dependence is quite different. We have used density functional theory for
calculating phonon dispersion branches in the whole Brillouin zone. A detailed
analysis of these results and of previously published magnon dispersion
branches brought us to the conclusion that the observed absorption bands stem
from phonon-phonon and phonon- paramagnon differential absorption processes.
The latter is enabled by a strong short-range in-plane spin correlations in the
paramagnetic phase.Comment: subm. to PR
Effects of Added Vegetation on Sand Bar Stability and Stream Hydrodynamics
Vegetation was added to a fully developed sandy point bar in the meander of a constructed stream. Significant changes in the flow structure and bed topography were observed. As expected, the addition of vegetative resistance decreased the depth-averaged streamwise velocity over the bar and increased it in the open region. In addition, the secondary circulation increased in strength but became confined to the deepest section of the channel. Over the point bar, the secondary flow was entirely outward, i.e., toward the outer bank. The changes in flow led to changes in bar shape. Although the region of the bar closest to the inner bank accumulated sediment, erosion of the bar and the removal of plants by scouring were observed at the interface between the planted bar and the open channel.National Science Foundation (U.S.) (Grant No. EAR 0738352
Two Displacive Ferroelectric Phase Transitions in Multiferroic Quadruple Perovskite
We report on the microwave, terahertz (THz), infrared and Raman spectroscopic
studies of ceramics, shedding more light into the nature of
two structural phase transitions and their possible relation with
ferroelectricity in this compound. We observed a softening of one polar phonon
in the THz range on cooling towards 460 and 300 K, i.e., temperatures at which
undergoes subsequent structural phase transitions from
monoclinic to polar monoclinic and triclinic
phases. The soft phonon causes dielectric anomalies typical for
displacive ferroelectric phase transitions. Microwave measurements performed at
5.8 GHz up to 400 K qualitatively confirmed not only the dielectric anomaly at
300 K, but also revealed two other weak dielectric anomalies near the magnetic
phase transitions at 60 K and 28 K. This evidences the multiferroic nature of
the low-temperature phases, although the relatively high conductivity in the
kHz and Hz spectral range prevented us from directly measuring the permittivity
and ferroelectric polarization. Some Raman modes sense the magnetic phase
transitions occurring near 60 and 25 K, showing that spin-phonon coupling is
relevant in this compound and in this temperature range. The deviation of the
Mn-O stretching mode frequency from the anharmonic temperature behavior was
successfully explained by the spin correlation function calculated from the
magnetic contribution to the specific heat
- âŠ