11 research outputs found
The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes
Bergantin LB, Figueiredo LB, Godinho RO. the lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes. J Appl Physiol 111: 1710-1718, 2011. First published September 15, 2011; doi:10.1152/japplphysiol.00586.2011.-The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with beta-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. in conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Div Cellular Pharmacol, Dept Pharmacol, Escola Paulista Med, BR-04044020 São Paulo, BrazilUniversidade Federal de São Paulo, Div Cellular Pharmacol, Dept Pharmacol, Escola Paulista Med, BR-04044020 São Paulo, BrazilFAPESP: 05/59006-1FAPESP: 08/55988-2CNPq: 304602/2008-6Web of Scienc
New pyridine N-oxides as chiral organocatalysts in the asymmetric allylation of aromatic aldehydes
Asymmetric allylation of aromatic aldehydes 1 with allyltrichlorosilane (2) can be catalyzed by new terpene-derived bipyridine N,N'-dioxides 12-15 and an axially chiral biisoquinoline dioxide 17b with good enantioselectivities. Dioxides have been found to be more reactive catalysts than their monooxide counterparts. Crown Copyright . All rights reserved
Global impact of the COVID-19 pandemic on stroke volumes and cerebrovascular events: one-year follow-up.
Background and objectives: Declines in stroke admission, IV thrombolysis (IVT), and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the effect of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), IVT, and mechanical thrombectomy over a 1-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).
Methods: We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, IVT treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.
Results: There were 148,895 stroke admissions in the 1 year immediately before compared with 138,453 admissions during the 1-year pandemic, representing a 7% decline (95% CI [95% CI 7.1-6.9]; p < 0.0001). ICH volumes declined from 29,585 to 28,156 (4.8% [5.1-4.6]; p < 0.0001) and IVT volume from 24,584 to 23,077 (6.1% [6.4-5.8]; p < 0.0001). Larger declines were observed at high-volume compared with low-volume centers (all p < 0.0001). There was no significant change in mechanical thrombectomy volumes (0.7% [0.6-0.9]; p = 0.49). Stroke was diagnosed in 1.3% [1.31-1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82-2.97], 5,656/195,539) of all stroke hospitalizations.
Discussion: There was a global decline and shift to lower-volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared with the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year
Rivaroxaban or aspirin for patent foramen ovale and embolic stroke of undetermined source: a prespecified subgroup analysis from the NAVIGATE ESUS trial
Background: Patent foramen ovale (PFO) is a contributor to embolic stroke of undetermined source (ESUS). Subgroup analyses from previous studies suggest that anticoagulation could reduce recurrent stroke compared with antiplatelet therapy. We hypothesised that anticoagulant treatment with rivaroxaban, an oral factor Xa inhibitor, would reduce the risk of recurrent ischaemic stroke compared with aspirin among patients with PFO enrolled in the NAVIGATE ESUS trial. Methods: NAVIGATE ESUS was a double-blinded, randomised, phase 3 trial done at 459 centres in 31 countries that assessed the efficacy and safety of rivaroxaban versus aspirin for secondary stroke prevention in patients with ESUS. For this prespecified subgroup analysis, cohorts with and without PFO were defined on the basis of transthoracic echocardiography (TTE) and transoesophageal echocardiography (TOE). The primary efficacy outcome was time to recurrent ischaemic stroke between treatment groups. The primary safety outcome was major bleeding, according to the criteria of the International Society of Thrombosis and Haemostasis. The primary analyses were based on the intention-to-treat population. Additionally, we did a systematic review and random-effects meta-analysis of studies in which patients with cryptogenic stroke and PFO were randomly assigned to receive anticoagulant or antiplatelet therapy. Findings: Between Dec 23, 2014, and Sept 20, 2017, 7213 participants were enrolled and assigned to receive rivaroxaban (n=3609) or aspirin (n=3604). Patients were followed up for a mean of 11 months because of early trial termination. PFO was reported as present in 534 (7·4%) patients on the basis of either TTE or TOE. Patients with PFO assigned to receive aspirin had a recurrent ischaemic stroke rate of 4·8 events per 100 person-years compared with 2·6 events per 100 person-years in those treated with rivaroxaban. Among patients with known PFO, there was insufficient evidence to support a difference in risk of recurrent ischaemic stroke between rivaroxaban and aspirin (hazard ratio [HR] 0·54; 95% CI 0·22–1·36), and the risk was similar for those without known PFO (1·06; 0·84–1·33; pinteraction=0·18). The risks of major bleeding with rivaroxaban versus aspirin were similar in patients with PFO detected (HR 2·05; 95% CI 0·51–8·18) and in those without PFO detected (HR 2·82; 95% CI 1·69–4·70; pinteraction=0·68). The random-effects meta-analysis combined data from NAVIGATE ESUS with data from two previous trials (PICSS and CLOSE) and yielded a summary odds ratio of 0·48 (95% CI 0·24–0·96; p=0·04) for ischaemic stroke in favour of anticoagulation, without evidence of heterogeneity. Interpretation: Among patients with ESUS who have PFO, anticoagulation might reduce the risk of recurrent stroke by about half, although substantial imprecision remains. Dedicated trials of anticoagulation versus antiplatelet therapy or PFO closure, or both, are warranted. Funding: Bayer and Janssen
Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: One-Year Follow-up.
Declines in stroke admission, intravenous thrombolysis, and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the impact of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), intravenous thrombolysis (IVT), and mechanical thrombectomy over a one-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).
We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, intravenous thrombolysis treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.
There were 148,895 stroke admissions in the one-year immediately before compared to 138,453 admissions during the one-year pandemic, representing a 7% decline (95% confidence interval [95% CI 7.1, 6.9]; p<0.0001). ICH volumes declined from 29,585 to 28,156 (4.8%, [5.1, 4.6]; p<0.0001) and IVT volume from 24,584 to 23,077 (6.1%, [6.4, 5.8]; p<0.0001). Larger declines were observed at high volume compared to low volume centers (all p<0.0001). There was no significant change in mechanical thrombectomy volumes (0.7%, [0.6,0.9]; p=0.49). Stroke was diagnosed in 1.3% [1.31,1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82,2.97], 5,656/195,539) of all stroke hospitalizations.
There was a global decline and shift to lower volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared to the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.
This study is registered under NCT04934020