119 research outputs found

    Sweeping at the Martin boundary of a fine domain

    Full text link
    We study sweeping on a subset of the Riesz-Martin space of a fine domain in \RR^n (n≄2n\ge2), both with respect to the natural topology and the minimal-fine topology, and show that the two notions of sweeping are identical.Comment: Minor correctio

    Martin boundary of a fine domain and a Fatou-Naim-Doob theorem for finely superharmonic functions

    Full text link
    We construct the Martin compactification Uˉ{\bar U} of a fine domain UU in RnR^n, n≄2n\ge 2, and the Riesz-Martin kernel KK on U×UˉU \times{\bar U}. We obtain the integral representation of finely superharmonic fonctions ≄0\ge 0 on UU in terms of KK and establish the Fatou-Naim-Doob theorem in this setting.Comment: Manuscript as accepted by publisher. To appear in Potential Analysi

    Maximal Plurifinely Plurisubharmonic functions

    Full text link
    The main purpose of this paper is to introduce and study the notion of plurifinely-maximal plurifinely plurisubharmonic functions, which extends the notion of maximal plurisubharmonic functions on a Euclidean domain to a plurifine domain of C^n in a natural way. Our main result is that a finite plurifinely plurisubharmonic function u on a plurifine domain U satisfies (dd^c u)^n=0 if and only if u is plurifinely-locally plurifinely-maximal outside some pluripolar set. In particular, a finite plurifinely-maximal plurisubharmonic function u satisfies (dd^c u)^n=0.Comment: 20 pages, manuscript as accepted by publisher. To appear in Potential Analysi

    Plurisubharmonic and holomorphic functions relative to the plurifine topology

    Get PDF
    A weak and a strong concept of plurifinely plurisubharmonic and plurifinely holomorphic functions are introduced. Strong will imply weak. The weak concept is studied further. A function f is weakly plurifinely plurisubharmonic if and only if f o h is finely subharmonic for all complex affine-linear maps h. As a consequence, the regularization in the plurifine topology of a pointwise supremum of such functions is weakly plurifinely plurisubharmonic, and it differs from the pointwise supremum at most on a pluripolar set. Weak plurifine plurisubharmonicity and weak plurifine holomorphy are preserved under composition with weakly plurifinely holomorphic maps.Comment: 28 page

    A note on the structure of plurifinely open sets and the equality of some complex Monge-Amp\`ere measures

    Full text link
    In a recent preprint published on arXiv (see arXiv:2308.02993v2, referred here as \cite{NXH}), N.X. Hong stated that every plurifinely open set U⊂CnU\subset \mathbb{C}^n, n≄1n\geq 1, is of the form U=⋃{φj>−1}U=\bigcup \{\varphi_j>-1\}, where each ϕj\phi_j is a negative plurisubharmonic function defined on an open ball Bj⊂CnB_j\subset \mathbb{C}^n and used this result to prove an equality result on complex Monge-Amp\`ere measures. Unfortunately, this result is wrong as we will see below.Comment: New version with small change in the abstrac

    Remarks on weak convergence of complex Monge-Amp\`ere measures

    Full text link
    Let (uj)(u_j) be a deaceasing sequence of psh functions in the domain of definition D\cal D of the Monge-Amp\`ere operator on a domain Ω\Omega of Cn\mathbb{C}^n such that u=inf⁥juju=\inf_j u_j is plurisubharmonic on Ω\Omega. In this paper we are interested in the problem of finding conditions insuring that \begin{equation*} \lim_{j\to +\infty} \int\varphi (dd^cu_j)^n=\int\varphi {\rm NP}(dd^cu)^n \end{equation*} for any continuous function on Ω\Omega with compact support, where NP(ddcu)n{\rm NP}(dd^cu)^n is the nonpolar part of (ddcu)n(dd^cu)^n, and conditions implying that u∈Du\in \cal D. For uj=max⁥(u,−j)u_j=\max(u,-j) these conditions imply also that \begin{equation*} \lim_{j\to +\infty} \int_K(dd^cu_j)^n=\int_K {\rm NP}(dd^cu)^n \end{equation*} for any compact set K⊂{u>−∞}K\subset\{u>-\infty\}

    La fréquence des symptÎmes physiques dans les troubles anxio-dépressifs: étude transversale chez une population de 202 consultants psychiatriques

    Get PDF
    Introduction: les symptĂŽmes physiques associĂ©s aux troubles anxio-dĂ©pressifs ont fait l'objet de plusieurs Ă©tudes depuis plusieurs dĂ©cennies, vu leurs frĂ©quences et leurs consĂ©quences. Le but de notre Ă©tude est de prĂ©ciser la frĂ©quence des principaux symptĂŽmes physiques des troubles anxieux: trouble panique (TP), trouble anxiĂ©tĂ© gĂ©nĂ©ralisĂ©e (TAG), troubles phobiques (TPh), et dĂ©pressifs: Ă©pisode dĂ©pressif majeur (EDM) dans le cadre d'un trouble dĂ©pressif). MĂ©thodes: nous avons menĂ© une Ă©tude transversale Ă  visĂ©e descriptive, rĂ©alisĂ©e sur un Ă©chantillon de 202 consultants dans un Service de Psychiatrie. RĂ©sultats: l'Ăąge moyen des patients est de 42 ans (19 Ă  70 ans), avec une lĂ©gĂšre prĂ©dominance fĂ©minine: 118 (58%). Les troubles anxio-dĂ©pressifs constatĂ©s sont: l'EDM: 113(56%), le TP: 61 (30.2%), le TAG: 55 (27.2%) et les TPh: 30 (14.9%). La frĂ©quence des patients prĂ©sentant de 2 Ă  5, et plus de 5 symptĂŽmes Ă©tait respectivement de 15.9% et 39.6% dans les troubles dĂ©pressifs, et de 9.5% et 62.9% dans les troubles anxieux. Les symptĂŽmes les plus rapportĂ©s sont d'ordre cardiopulmonaire (75%), gĂ©nĂ©ral (73.8%) et neurologique (65.8%). Conclusion: les symptĂŽmes physiques qui accompagnent les troubles anxio-dĂ©pressifs, sont variables et souvent nombreux. Ils peuvent aggraver le pronostic de ces troubles psychiatriques, en rendant difficile leur prise en charge. Un dĂ©pistage prĂ©coce de ces troubles, en portant une attention particuliĂšre Ă  ces symptĂŽmes physiques, permettra de prĂ©venir ces complications
    • 

    corecore