233 research outputs found

    Ocular Gene Transfer with Self-Complementary AAV Vectors

    Get PDF
    PURPOSE. Self-complementary AAV (scAAV) vectors have been developed to circumvent rate-limiting second-strand synthesis in single-stranded AAV vector genomes and to facilitate robust transgene expression at a minimal dose. In this study, the authors investigated the effects of intraocular injections of type 2 scAAV.GFP in mice. METHODS. Dose-response experiments were performed to compare conventional single-strand AAV type 2 (ssAAV2) vectors with scAAV2 vectors encoding an identical expression cassette. RESULTS. Subretinal injection of 5 X 108viral particles (vp) of scAAV.CMV-GFP resulted in green fluorescent protein (GFP) expression in almost all retinal pigment epithelial (RPE) cells within the area of the small detachment caused by the injection by 3 days and strong, diffuse expression by 7 days. Expression was strong in all retinal cell layers by days 14 and 28. In contrast, 3 days after subretinal injection of 5 X 108vp of ssAAV.CMV-GFP, GFP expression was detectable in few RPE cells. Moreover, the ssAAV vector required 14 days for the attainment of expression levels comparable to those observed using scAAV at day 3. Expression in photoreceptors was not detectable until day 28. Dose-response experiments confirmed that onset of GFP expression was more rapid and robust after subretinal injection of scAAV.CMV-GFP than of ssAAV.CMV-GFP, resulting in pronounced expression in photoreceptors and other retinal neurons. Similar results were obtained for intravitreous injections. CONCLUSIONS. These data suggest that scAAV vectors may be advantageous for ocular gene therapy, particularly in retinal diseases that require rapid and robust transgene expression in photoreceptor cells

    Cytogenetic Effects of Radiation from Projector on Meristematic Cells of Allium Cepa (Onions) Root

    Get PDF
    The objective of this study is to evaluate the cytogenetic consequences of exposing root tips of Allium cepa (onion) to varying distances and durations of radiation from the projector and treatment with sodium azide and distilled water using standard methods. The sodium azide and distilled water served as positive and negative controls respectively. Results obtained in this study revealed that radiations from the projector induced eleven chromosomal aberrations which included; binucleate cells, sticky chromosomes, vacuolated cells, star metaphase, bride chromosome, vagrant chromosome, faculty polarity, C-mitosis, spindle fibre disturbance, ghost cells, and fragmented chromosomes. This suggests that radiation from the projector poses danger to genetic systems. The higher mitotic index of irradiated onion root tip cells compared to negative control groups indicates that radiation from the projector exhibited a promontory effect on cell division. The findings in this study revealed that exposing cells to radiation beyond 20cm from projector reduced its potencies to induce aberrations as well as distortion of mitotic cell division cycles irrespective of the duration of exposure. This suggests that the genotoxic effects of radiations from a projector depend more on distance than the duration of exposure

    A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method

    Get PDF
    The reduction in H2/CH4 atmosphere of aluminum-iron oxides produces metal particles small enough to catalyze the formation of single-walled carbon nanotubes. Several experiments have been made using the same temperature profile and changing only the maximum temperature (800-1070 °C). Characterizations of the catalyst materials are performed using notably 57Fe Mo¨ssbauer spectroscopy. Electron microscopy and a macroscopical method are used to characterize the nanotubes. The nature of the iron species (Fe3+, R-Fe, ç-Fe-C, Fe3C) is correlated to their location in the material. The nature of the particles responsible for the high-temperature formation of the nanotubes is probably an Fe-C alloy which is, however, found as Fe3C by postreaction analysis. Increasing the reduction temperature increases the reduction yield and thus favors the formation of surface-metal particles, thus producing more nanotubes. The obtained carbon nanotubes are mostly single-walled and double-walled with an average diameter close to 2.5 nm. Several formation mechanisms are thought to be active. In particular, it is shown that the second wall can grow inside the first one but that subsequent ones are formed outside. It is also possible that under given experimental conditions, the smallest (<2 nm) catalyst particles preferentially produce double-walled rather than single-walled carbon nanotubes

    Association between Insomnia Symptoms and Hemoglobin A1c Level in Japanese Men

    Get PDF
    Background: The evidence for an association between insomnia symptoms and blood hemoglobin A1c (HbA1c) level has been limited and inconclusive. The aim of this study was to assess whether each symptom of initial, middle, and terminal insomnia influences HbA 1c level in Japanese men. Methods: This cross-sectional study examined 1,022 male workers aged 22–69 years with no history of diabetes at a Japanese company’s annual health check-up in April 2010. High HbA1c was defined as a blood level of HbA1c $6.0%. Three types of insomnia symptoms (i.e., difficulty in initiating sleep, difficulty in maintaining sleep, and early morning awakening) from the previous month were assessed by 3 responses (i.e., lasting more than 2 weeks, sometimes, and seldom or never [reference group]). Results: The overall prevalence of high HbA1c was 5.2%. High HbA1c was positively and linearly associated with both difficulty in maintaining sleep (P for trend =.002) and early morning awakening (P for trend =.007). More specifically, after adjusting for potential confounding factors, high HbA1c was significantly associated with difficulty in maintaining sleep lasting more than 2 weeks (adjusted odds ratio, 6.79 [95 % confidence interval, 1.86–24.85]) or sometimes (2.33 [1.19–4.55]). High HbA1c was also significantly associated with early morning awakening lasting more than 2 weeks (3.96 [1.24–12.59]). Conclusion: Insomnia symptoms, particularly difficulty in maintaining sleep and early morning awakening, were found t

    Regulation of Pathologic Retinal Angiogenesis in Mice and Inhibition of VEGF-VEGFR2 Binding by Soluble Heparan Sulfate

    Get PDF
    Development of the retinal vascular network is strictly confined within the neuronal retina, allowing the intraocular media to be optically transparent. However, in retinal ischemia, pro-angiogenic factors (including vascular endothelial growth factor-A, VEGF-A) induce aberrant guidance of retinal vessels into the vitreous. Here, we show that the soluble heparan sulfate level in murine intraocular fluid is high particularly during ocular development. When the eyes of young mice with retinal ischemia were treated with heparan sulfate-degrading enzyme, the subsequent aberrant angiogenesis was greatly enhanced compared to PBS-injected contralateral eyes; however, increased angiogenesis was completely antagonized by simultaneous injection of heparin. Intraocular injection of heparan sulfate or heparin alone in these eyes resulted in reduced neovascularization. In cell cultures, the porcine ocular fluid suppressed the dose-dependent proliferation of human umbilical vein endothelial cells (HUVECs) mediated by VEGF-A. Ocular fluid and heparin also inhibited the migration and tube formation by these cells. The binding of VEGF-A and HUVECs was reduced under a high concentration of heparin or ocular fluid compared to lower concentrations of heparin. In vitro assays demonstrated that the ocular fluid or soluble heparan sulfate or heparin inhibited the binding of VEGF-A and immobilized heparin or VEGF receptor 2 but not VEGF receptor 1. The recognition that the high concentration of soluble heparan sulfate in the ocular fluid allows it to serve as an endogenous inhibitor of aberrant retinal vascular growth provides a platform for modulating heparan sulfate/heparin levels to regulate angiogenesis

    Insulated gate and surface passivation structures for GaN-based power transistors

    Get PDF
    Recent years have witnessed GaN-based devices delivering their promise of unprecedented power and frequency levels and demonstrating their capability as an able replacement for Si-based devices. High-electron-mobility transistors (HEMTs), a key representative architecture of GaN-based devices, are well-suited for high-power and high frequency device applications, owing to highly desirable III-nitride physical properties. However, these devices are still hounded by issues not previously encountered in their more established Si- and GaAs-based devices counterparts. Metal–insulator–semiconductor (MIS) structures are usually employed with varying degrees of success in sidestepping the major problematic issues such as excessive leakage current and current instability. While different insulator materials have been applied to GaN-based transistors, the properties of insulator/III-N interfaces are still not fully understood. This is mainly due to the difficulty of characterizing insulator/AlGaN interfaces in a MIS HEMT because of the two resulting interfaces: insulator/AlGaN and AlGaN/GaN, making the potential modulation rather complicated. Although there have been many reports of low interface-trap densities in HEMT MIS capacitors, several papers have incorrectly evaluated their capacitance–voltage (C–V) characteristics. A HEMT MIS structure typically shows a 2-step C–V behavior. However, several groups reported C–V curves without the characteristic step at the forward bias regime, which is likely to the high-density states at the insulator/AlGaN interface impeding the potential control of the AlGaN surface by the gate bias. In this review paper, first we describe critical issues and problems including leakage current, current collapse and threshold voltage instability in AlGaN/GaN HEMTs. Then we present interface properties, focusing on interface states, of GaN MIS systems using oxides, nitrides and high-κ dielectrics. Next, the properties of a variety of AlGaN/GaN MIS structures as well as different characterization methods, including our own photo-assisted C–V technique, essential for understanding and developing successful surface passivation and interface control schemes, are given in the subsequent section. Finally we highlight the important progress in GaN MIS interfaces that have recently pushed the frontier of nitride-based device technology

    Nonvirally Modified Autologous Primary Hepatocytes Correct Diabetes and Prevent Target Organ Injury in a Large Preclinical Model

    Get PDF
    BACKGROUND: Current gene- and cell-based therapies have significant limitations which impede widespread clinical application. Taking diabetes mellitus as a paradigm, we have sought to overcome these limitations by ex vivo electrotransfer of a nonviral insulin expression vector into primary hepatocytes followed by immediate autologous reimplantation in a preclinical model of diabetes. METHODS AND RESULTS: In a single 3-hour procedure, hepatocytes were isolated from a surgically resected liver wedge, electroporated with an insulin expression plasmid ex vivo and reimplanted intraparenchymally under ultrasonic guidance into the liver in each of 10 streptozotocin-induced diabetic Yorkshire pigs. The vector was comprised of a bifunctional, glucose-responsive promoter linked to human insulin cDNA. Ambient glucose concentrations appropriately altered human insulin mRNA expression and C-peptide secretion within minutes in vitro and in vivo. Treated swine showed correction of hyperglycemia, glucose intolerance, dyslipidemia and other metabolic abnormalities for > or = 47 weeks. Metabolic correction correlated significantly with the number of hepatocytes implanted. Importantly, we observed no hypoglycemia even under fasting conditions. Direct intrahepatic implantation of hepatocytes did not alter biochemical indices of liver function or induce abnormal hepatic lobular architecture. About 70% of implanted hepatocytes functionally engrafted, appeared histologically normal, retained vector DNA and expressed human insulin for > or = 47 weeks. Based on structural tissue analyses and transcriptome data, we showed that early correction of diabetes attenuated and even prevented pathological changes in the eye, kidney, liver and aorta. CONCLUSIONS: We demonstrate that autologous hepatocytes can be efficiently, simply and safely modified by electroporation of a nonviral vector to express, process and secrete insulin durably. This strategy, which achieved significant and sustained therapeutic efficacy in a large preclinical model without adverse effects, warrants consideration for clinical development especially as it could have broader future applications for the treatment of other acquired and inherited diseases for which systemic reconstitution of a specific protein deficiency is critical

    Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina

    Get PDF
    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function

    Intermediate filament cytoskeleton of the liver in health and disease

    Get PDF
    Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising ~70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation
    corecore