90 research outputs found
Molecular diversification and preliminary evaluations of some satsuma selections’ performance under mediterranean conditions
Satsuma (Citrus unshiu Marc.) has been cultivated for a long time in Turkey, and therefore variations for agronomical traits are likely among cultivated satsumas due to bud mutations. The objectives of this study were to determine variations for some selected agronomical traits and genetic markers among 21 new satsumas derived from selections. Fruit yield, fruit quality and molecular diversification of these clones were determined. The clones of 62 Adana, 4/2 Izmir and 11/1 Izmir indicated the highest yield. The fruits obtained from all clones were heavier than the control (Owari Satsuma). Molecular analysis, as assessed with 9 random amplification of polymorphic DNA (RAPD) and 14 simple sequence repeats (SSR) primers, indicated that satsuma clones showed a narrow genetic base suggesting that the observed morphological polymorphism within the group must be associated with somatic mutations which were not detected by these molecular markers.Key words: Mandarins, clonal selection, citrus
Relationship between microstructure and fracture types in a UNS S32205 duplex stainless steel
Duplex stainless steels are susceptible to the formation of sigma phase at high temperature which could potentially be responsible for catastrophic service failure of components. Thermal treatments were applied to duplex stainless steels in order to promote the precipitation of different fractions of sigma phase into a ferrite-austenite microstructure. Quantitative image analysis was employed to characterize the microstructure and Charpy impact tests were used in order to evaluate the mechanical degradation caused by sigma phase presence. The fracture morphology of the Charpy test specimens were thoroughly observed in SEM, looking for a correlation between the microstructure and the fracture types in UNS S32205 duplex stainless steel. The main conclusion is the strong embrittlement effect of sigma phase since it is possible to observe a transition from transgranular fracture to intergranular fracture as increases the percentage of sigma phase. Thus, the mixed modes of fracture are predominant in the present study with high dependence on sigma phase percentages obtained by different thermal treatments
Recommended from our members
Exploring Vitreous Haze as a Potential Biomarker for Accelerated Glymphatic Outflow and Neurodegeneration in Multiple Sclerosis: A Cross-Sectional Study
Background: The glymphatic system removes neurodegenerative debris. The ocular glymphatic outflow is from the eye to the proximal optic nerve. In multiple sclerosis (MS), atrophy of the optic nerve increases the glymphatic outflow space. Here, we tested whether vitreous haze (VH) can provide novel insights into the relationship between neurodegeneration and the ocular glymphatic system in MS. Methods: This cross-sectional study comprised 315 persons with MS and 87 healthy controls (HCs). VH was quantified from optical coherence tomography (OCT) volume scans. Neurodegeneration was determined on three-dimensional T1 (3DT1) MRI, lesion detection on fluid-attenuated inversion (FLAIR), and layer thickness on OCT. Generalized estimating equations, corrected for age, were used to analyze associations between VH and metrics for neurodegeneration, demographics, and clinical scales. Group differences were determined between mild, moderate, and severe disability. Results: On the group level, VH scores were comparable between MS and control (p = 0.629). In MS, VH scores declined with disease duration (β = −0.009, p = 0.004) and age (β = −0.007, p = 0.001). There was no relation between VH scores and higher age in HCs. In MS patients, VH was related to normalized gray (NGMV, β = 0.001, p = 0.011) and white matter volume (NWMV, β = 0.001, p = 0.003), macular ganglion cell–inner plexiform layer thickness (mGCIPL, β = 0.006, p < 0.001), and peripapillary retinal nerve fiber layer thickness (pRNFL, β = 0.004, p = 0.008). VH was significantly lower in severe compared to mild disability (mean difference −28.86%, p = 0.058). Conclusions: There is a correlation between VH on OCT and disease duration, more severe disability and lower brain volumes in MS. Biologically, these relationships suggest accelerated glymphatic clearance with disease-related atrophy
Life Beyond the Solar System: Remotely Detectable Biosignatures
For the first time in human history, we will soon be able to apply to the scientific method to the question "Are We Alone?" The rapid advance of exoplanet discovery, planetary systems science, and telescope technology will soon allow scientists to search for life beyond our Solar System through direct observation of extrasolar planets. This endeavor will occur alongside searches for habitable environments and signs of life within our Solar System. While these searches are thematically related and will inform each other, they will require separate observational techniques. The search for life on exoplanets holds potential through the great diversity of worlds to be explored beyond our Solar System. However, there are also unique challenges related to the relatively limited data this search will obtain on any individual world
A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society
Executive summary
Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative–the IMiLI–is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation.
The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike.
The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators–learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators–learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships–a global societally relevant microbiology education ecosystem–in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased.
The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient.
AbstractThe biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us–individuals/communities/nations/the human world–and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI.
Here, we present
- our concept of how microbiology literacy may be achieved and the rationale underpinning it;
- the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and
- the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks.
The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091–1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge
- …