391 research outputs found

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Vortices and Superfluidity in a Strongly Interacting Fermi Gas

    Full text link
    Quantum-degenerate Fermi gases provide a remarkable opportunity to study strongly interacting fermions. In contrast to other Fermi systems, such as superconductors, neutron stars or the quark-gluon plasma, these gases have low densities and their interactions can be precisely controlled over an enormous range. Here we report observations of vortices in such a gas that provide definitive evidence for superfluidity. By varying the pairing strength between two fermions near a Feshbach resonance, one can explore the crossover from a Bose-Einstein condensate (BEC) of molecules to a Bardeen-Cooper-Schrieffer (BCS) superfluid of loosely bound pairs whose size is comparable to, or even larger than, the interparticle spacing. The crossover realizes a novel form of high-T_C superfluidity and it may provide new insight for high-T_C superconductors. Previous experiments with Fermi gases have revealed condensation of fermion pairs. While these and other studies were consistent with predictions assuming superfluidity, the smoking gun for superfluid behavior has been elusive. Our observation of vortex lattices directly displays superfluid flow in a strongly interacting, rotating Fermi gas.Comment: 14 pages, including 7 figures, submitted to Natur

    Three year experience with the cochlear BAHA attract implant: a systematic review of the literature

    Get PDF
    Background Bone conduction devices are widely used and indicated in cases of conductive, mixed or single sided deafness where conventional hearing aids are not indicated or tolerated. Percutaneous bone-conduction devices gave satisfactory hearing outcomes but were frequently complicated by soft tissue reactions. Transcutaneous bone conduction devices were developed in order to address some of the issues related to the skin-penetrating abutment. The aim of this article is to present a systematic review of the indications, surgical technique and audiological, clinical and functional outcomes of the BAHA Attract device reported so far. Methods A systematic computer-based literature search was performed on the PubMed database as well as Scopus, Cochrane and Google Scholar. Out of 497 articles, 10 studies and 89 reported cases were finally included in our review. Results The vast majority of implanted patients were satisfied with the aesthetics of the device scoring highly at the Abbreviated Profile of Hearing Aid Benefit, Glasgow Benefit Inventory and Client Oriented Scale of Improvement. Overall, hearing outcomes, tested by various means including speech in noise, free field hearing testing and word discrimination scores showed a significant improvement. Complications included seroma or haematoma formation, numbness around the area of the flap, swelling and detachment of the sound processor from the external magnet. Conclusions The functional and audiological results presented so far in the literature have been satisfactory and the complication rate is low compared to the skin penetrating Bone Conduction Devices. Further robust trials will be needed to study the long-term outcomes and any adverse effects

    Direct application of plasmid DNA containing type I interferon transgenes to vaginal mucosa inhibits HSV-2 mediated mortality

    Get PDF
    The application of naked DNA containing type I interferon (IFN) transgenes is a promising potential therapeutic approach for controlling chronic viral infections. Herein, we detail the application of this approach that has been extensively used to restrain ocular HSV-1 infection, for antagonizing vaginal HSV-2 infection. We show that application of IFN-α1, -α5, and –β transgenes to vaginal mouse lumen 24 hours prior to HSV-2 infection reduces HSV-2 mediated mortality by 2.5 to 3-fold. However, other type I IFN transgenes (IFN- α4, -α5, -α6, and –α9) are non effectual against HSV-2. We further show that the efficacy of IFN-α1 transgene treatment is independent of CD4+ T lymphocytes. However, in mice depleted of CD8+ T lymphocytes, the ability of IFN-α1 transgene treatment to antagonize HSV-2 was lost

    An Evaluation of the Precision of Measurement of Ryff’s Psychological Well-Being Scales in a Population Sample

    Get PDF
    The aim of this study is to assess the effective measurement range of Ryff’s Psychological Well-being scales (PWB). It applies normal ogive item response theory (IRT) methodology using factor analysis procedures for ordinal data based on a limited information estimation approach. The data come from a sample of 1,179 women participating in a midlife follow-up of a national birth cohort study in the UK. The PWB scales incorporate six dimensions: autonomy, positive relations with others, environmental mastery, personal growth, purpose in life and self-acceptance. Scale information functions were calculated to derive standard errors of measurement for estimated scores on each dimension. Construct variance was distinguished from method variance by inclusion of method factors from item wording (positive versus negative). Our IRT analysis revealed that the PWB measures well-being most accurately in the middle range of the score distribution, i.e. for women with average well-being. Score precision diminished at higher levels of well-being, and low well-being was measured more reliably than high well-being. A second-order well-being factor loaded by four of the dimensions achieved higher measurement precision and greater score accuracy across a wider range than any individual dimension. Future development of well-being scales should be designed to include items that are able to discriminate at high levels of well-being

    Search for the standard model Higgs boson at LEP

    Get PDF

    SNP array-based whole genome homozygosity mapping as the first step to a molecular diagnosis in patients with Charcot-Marie-Tooth disease

    Get PDF
    Considerable non-allelic heterogeneity for autosomal recessively inherited Charcot-Marie-Tooth (ARCMT) disease has challenged molecular testing and often requires a large amount of work in terms of DNA sequencing and data interpretation or remains unpractical. This study tested the value of SNP array-based whole-genome homozygosity mapping as a first step in the molecular genetic diagnosis of sporadic or ARCMT in patients from inbred families or outbred populations with the ancestors originating from the same geographic area. Using 10 K 2.0 and 250 K Nsp Affymetrix SNP arrays, 15 (63%) of 24 CMT patients received an accurate genetic diagnosis. We used our Java-based script eHoPASA CMT—easy Homozygosity Profiling of SNP arrays for CMT patients to display the location of homozygous regions and their extent of marker count and base-pairs throughout the whole genome. CMT4C was the most common genetic subtype with mutations detected in SH3TC2, one (p.E632Kfs13X) appearing to be a novel founder mutation. A sporadic patient with severe CMT was homozygous for the c.250G > C (p.G84R) HSPB1 mutation which has previously been reported to cause autosomal dominant dHMN. Two distantly related CMT1 patients with early disease onset were found to carry a novel homozygous mutation in MFN2 (p.N131S). We conclude that SNP array-based homozygosity mapping is a fast, powerful, and economic tool to guide molecular genetic testing in ARCMT and in selected sporadic CMT patients
    corecore