39 research outputs found

    Interference of H-bonding and substituent effects in nitro- and hydroxy-substituted salicylaldehydes

    Get PDF
    Two intramolecular interactions, i.e., (1) hydrogen bond and (2) substituent effect, were analyzed and compared. For this purpose, the geometry of 4- and 5-X-substituted salicylaldehyde derivatives (X = NO2, H or OH) was optimized by means of B3LYP/6-311 + G(d,p) and MP2/aug-cc-pVDZ methods. The results obtained allowed us to show that substituents (NO2 or OH) in the para or meta position with respect to either OH or CHO in H-bonded systems interact more strongly than in the case of di-substituted species: 4- and 3-nitrophenol or 4- and 3-hydroxybenzaldehyde by ∼31%. The substituent effect due to the intramolecular charge transfer from the para-counter substituent (NO2) to the proton-donating group (OH) is ∼35% greater than for the interaction of para-OH with the proton-accepting group (CHO). The total energy of H-bonding for salicylaldehyde, and its derivatives, is composed of two contributions: ∼80% from the energy of H-bond formation and ∼20% from the energy associated with reorganization of the electron structure of the systems in question

    Gene assembly via one-pot chemical ligation of DNA promoted by DNA nanostructures

    No full text
    Current gene synthesis methods are driven by enzymatic reactions. Here we report the one-pot synthesis of a chemically-ligated gene from 14 oligonucleotides. The chemical ligation benefits from the highly efficient click chemistry approach templated by DNA nanostructures, and produces modified DNA that is compatible with polymerase enzymes

    Single-Step Rapid Assembly of DNA Origami Nanostructures for Addressable Nanoscale Bioreactors

    No full text
    Self-assembled DNA origami nanostructures have shown great promise for bottom-up construction of complex objects with nanoscale addressability. Here we show that DNA origami-based ID nanoribbons and nanotubes are one-pot assembled with controllable sizes and nanoscale addressability with high speed (within only 10-20 min), exhibiting extraordinarily high cooperativity that is often observed in assembly of natural molecular machines in cells (e.g. ribosome). By exploiting the high specificity of DNA-based self-assembly, we can precisely anchor proteins on these DNA origami nanostructures with sub-10 nm resolution and at the single-molecule level. We attach a pair of enzymes (horseradish peroxidase and glucose oxidase) at the inner side of DNA nanotubes and observe high coupling efficiency of enzyme cascade within this confined nanospace. Hence, DNA nanostructures with such unprecedented properties shed new light on the design of nanoscale bioreactors and nanomedicine and provide an artificial system for studying enzyme activities and cascade in highly organized and crowded cell-mimicking environments
    corecore