202 research outputs found
Design and Optimization process of press tools using Forming analysis for Frame Bonnet Front Automobile Panel
This paper highlights the springback compensation of frame bonnet front automobile part by using simulation tools. Frame Bonnet Front has more spring back than typical steel, affecting the end part's dimensional correctness. While stamping a sheet metal component, spring back compensation is a significant difficulty. Spring back is the geometric change that occurs when a part is freed from the tool press. Springback is caused by the elastic release from the bending stress given to the sheet metal during forming. By using over bending technique, the material is bent beyond its intended angle, allowing the springback to return it to the intended angle. The over bending compensation value can be carried out with the help of simulation. The compensation values from simulation applied to practical bending process. The final results of the part on the inspection fixture were within the allowed tolerance. Toolmaker can save a lot of time and money by using simulation for springback in their engineering and testing
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
Massive binary black holes in galactic nuclei and their path to coalescence
Massive binary black holes form at the centre of galaxies that experience a
merger episode. They are expected to coalesce into a larger black hole,
following the emission of gravitational waves. Coalescing massive binary black
holes are among the loudest sources of gravitational waves in the Universe, and
the detection of these events is at the frontier of contemporary astrophysics.
Understanding the black hole binary formation path and dynamics in galaxy
mergers is therefore mandatory. A key question poses: during a merger, will the
black holes descend over time on closer orbits, form a Keplerian binary and
coalesce shortly after? Here we review progress on the fate of black holes in
both major and minor mergers of galaxies, either gas-free or gas-rich, in
smooth and clumpy circum-nuclear discs after a galactic merger, and in
circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard
cover in the Space Sciences Series of ISSI "The Physics of Accretion onto
Black Holes" (Springer Publisher
The first ultracompact Roche lobe-filling hot subdwarf binary
We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane named the Zwicky Transient Facility and exhibits a period of Porb=39.3401(1) min, making it the most compact hot subdwarf binary currently known. Spectroscopic observations are consistent with an intermediate He-sdOB star with an effective temperature of Teff=42,400±300 K and a surface gravity of log(g)=5.77±0.05. A high-signal-to noise GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the sdOB star and an eclipse of the sdOB by an accretion disk. We infer a low-mass hot subdwarf donor with a mass MsdOB=0.337±0.015 M⊙ and a white dwarf accretor with a mass MWD=0.545±0.020 M⊙. Theoretical binary modeling indicates the hot subdwarf formed during a common envelope phase when a 2.5−2.8 M⊙ star lost its envelope when crossing the Hertzsprung Gap. To match its current Porb, Teff, log(g), and masses, we estimate a post-common envelope period of Porb≈150 min, and find the sdOB star is currently undergoing hydrogen shell burning. We estimate that the hot subdwarf will become a white dwarf with a thick helium layer of ≈0.1 M⊙ and will merge with its carbon/oxygen white dwarf companion after ≈17 Myr and presumably explode as a thermonuclear supernova or form an R CrB star
A dense 0.1-solar-mass star in a 51-minute-orbital-period eclipsing binary
Of more than a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes1,2,3,4,5,6,7,8,9. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution before interacting with the white dwarf10,11,12,13,14, and it is expected that these objects will transition to helium accretion. These transitional CVs have been proposed as progenitors of helium CVs13,14,15,16,17,18. However, no known transitional CV is expected to reach an orbital period short enough to account for most of the helium CV population, leaving the role of this evolutionary pathway unclear. Here we report observations of ZTF J1813+4251, a 51-minute-orbital-period, fully eclipsing binary system consisting of a star with a temperature comparable to that of the Sun but a density 100 times greater owing to its helium-rich composition, accreting onto a white dwarf. Phase-resolved spectra, multi-band light curves and the broadband spectral energy distribution allow us to obtain precise and robust constraints on the masses, radii and temperatures of both components. Evolutionary modelling shows that ZTF J1813+4251 is destined to become a helium CV binary, reaching an orbital period under 20 minutes, rendering ZTF J1813+4251 a previously missing link between helium CV binaries and hydrogen-rich CVs
A new class of Roche lobe–filling hot subdwarf binaries
We present the discovery of the second binary with a Roche lobe–filling hot subdwarf transferring mass to a white dwarf (WD) companion. This 56 minute binary was discovered using data from the Zwicky Transient Facility. Spectroscopic observations reveal an He-sdOB star with an effective temperature of T eff = 33,700 ± 1000 K and a surface gravity of log(g) = 5.54 ± 0.11. The GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the He-sdOB star and shows an eclipse of the He-sdOB by an accretion disk as well as a weak eclipse of the WD. We infer a He-sdOB mass of M sdOB = 0.41 ± 0.04 M ⊙ and a WD mass of M WD = 0.68 ± 0.05 M ⊙. The weak eclipses imply a WD blackbody temperature of 63,000 ± 10,000 K and a radius R WD = 0.0148 ± 0.0020 R ⊙ as expected for a WD of such high temperature. The He-sdOB star is likely undergoing hydrogen shell burning and will continue transferring mass for ≈1 Myr at a rate of 10−9 M ⊙ yr−1, which is consistent with the high WD temperature. The hot subdwarf will then turn into a WD and the system will merge in ≈30 Myr. We suggest that Galactic reddening could bias discoveries toward preferentially finding Roche lobe–filling systems during the short-lived shell-burning phase. Studies using reddening-corrected samples should reveal a large population of helium core–burning hot subdwarfs with T eff ≈ 25,000 K in binaries of 60–90 minutes with WDs. Though not yet in contact, these binaries would eventually come into contact through gravitational-wave emission and explode as a subluminous thermonuclear supernova or evolve into a massive single WD
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015
Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography–year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4–61·9) in 1980 to 71·8 years (71·5–72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7–17·4), to 62·6 years (56·5–70·2). Total deaths increased by 4·1% (2·6–5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8–18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6–16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9–14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1–44·6), malaria (43·1%, 34·7–51·8), neonatal preterm birth complications (29·8%, 24·8–34·9), and maternal disorders (29·1%, 19·3–37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000–183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000–532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill & Melinda Gates Foundation
Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018
Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe
Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018
- …
