22 research outputs found

    Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing <i>In Vivo</i>

    No full text
    <div><p>Prions are a group of proteins that can adopt a spectrum of metastable conformations <i>in vivo</i>. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure <i>in vivo</i>. But, while we can effectively predict amyloid propensity <i>in vitro</i>, the mechanism by which sequence elements promote prion propagation <i>in vivo</i> remains unclear. In yeast, propagation of the [<i>PSI</i><sup><i>+</i></sup>] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid.</p></div
    corecore