49 research outputs found

    In vitro microtuberization of Black Zira (Bunium persicum Boiss.)

    Get PDF
    Bunium persicum or Black Zira is one of the endangered species in the land of Persia. The main purpose of this study was to investigate microtuberization of B persicumin in order to use in germplasm storage and commercial production. Seeds of B. persicum were used as explant. Different culture media (MS, ½MS and B5) along with different concentrations of jasmonic acid (JA) (0, 2 and 5) were used individually as basal media and also in combination with two different temperatures (15 and 20°C) to develop appropriate media for microtuberization. Moreover, propagated microtubers were then vernalized and acclimatized in order to transfer to greenhouse. The results revealed that by increasing in concentration of JA, weight and length of microtubers increased significantly. MS medium seemed to be the most effective basal medium for this plant. In contrary, this study indicated that MS medium and 5 mM JA were the most suitable combination for in vitro culture establishment and short-term maintenance of tested B. persicum. Also, 15°C showed significant effect on increasing the weight of microtubers.Keywords: Microtuberization, Bunium persicum, jasmonic acid, temperature, medium

    Effect of mosaic virus diseases on dry matter content and starch yield of five cassava (Manihot esculenta Crantz) accessions in Ghana

    Get PDF
    The effect of mosaic virus diseases on dry matter content and starch yield of five local accessions of cassava, “Ankrah”, “AW/17, “Tomfa”, “Dagarti” and “Tuaka” was evaluated. Tomfa showed the highest (95%) incidence of the disease, index of severity of symptoms for all plants (ISSAP) of 3.70, as well as, for diseased plants (ISSDP) (3.84) while Dagarti did not show any phenotypic expression of the disease throughout the study period. Most of the accessions displayed mosaic disease symptoms two months after planting but by the fifth month had fully recovered. However, polymerase chain reaction (PCR)-based testing at 12 months after planting revealed the presence of ACMV in all the accessions while EACMV was observed in Ankrah, Dagarti and AW/17. Mean tuber (fresh root weight) and starch yield at 12 months after planting (MAP) was significantly (P ≤ 0.05) high in Ankrah while percentage dry matter was significantly higher in Dagarti than the other accessions. A negative correlation between starch yield and cassava mosaic disease incidence implies that a high mosaic incidence particularly in the first three months results in lower tuber and starch yields.Keywords: Mosaic virus diseases, dry matter, starch yield, PCR, disease incidenceAfrican Journal of Biotechnology Vol. 12(27), pp. 4310-431

    Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia

    Get PDF
    An ethnomedicinal study was conducted to document the indigenous medicinal plant knowledge and use by traditional healers in southwestern Ethiopia from December 2005 to November 2006. Data were collected from 45 randomly selected traditional healers using semi-structured interviews and observations. Sixty-seven ethnomedicinal plant species used by traditional healers to manage 51 different human ailments were identified and documented. Healers' indigenous knowledge was positively correlated with their reported age but not with their educational level. High degree of consensus was observed among traditional healers in treating tumor (locally known as Tanacha), rabies (Dhukuba Seree) and insect bite (Hadhaa). The use of more than one species was significantly cited for remedy preparations. The reported abundance of the ethnomedicinal plant species varied significantly with respect to the presence of multiple uses of the reported species. Our results showed that ethnomedicinal plant species used by healers are under serious threat due to several factors, which indicates the need for urgent attention towards their conservation and sustainable utilization

    Bioactivity of miltefosine against aquatic stages of Schistosoma mansoni, Schistosoma haematobium and their snail hosts, supported by scanning electron microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Miltefosine, which is the first oral drug licensed for the treatment of leishmaniasis, was recently reported to be a promising lead compound for the synthesis of novel antischistosomal derivatives with potent activity <it>in vivo </it>against different developmental stages of <it>Schistosoma mansoni</it>. In this paper an <it>in vitro </it>study was carried out to investigate whether it has a biocidal activity against the aquatic stages of <it>Schistosoma mansoni </it>and its snail intermediate host, <it>Biomphalaria alexandrina </it>, thus being also a molluscicide. Additionally, to see whether miltefosine can have a broad spectrum antischistosomal activity, a similar <it>in vitro </it>study was carried out on the adult stage of <it>Schistosoma haematobium</it>, the second major human species, its larval stages and snail intermediate host, <it>Bulinus truncutes</it>. This was checked by scanning electron microscopy.</p> <p>Results</p> <p>Miltefosine proved to have <it>in vitro </it>ovicidal, schistolarvicidal and lethal activity on adult worms of both <it>Schistosoma </it>species and has considerable molluscicidal activity on their snail hosts. Scanning electron microscopy revealed several morphological changes on the different stages of the parasite and on the soft body of the snail, which further strengthens the current evidence of miltefosine's activity. This is the first report of mollusicidal activity of miltefosine and its <it>in vitro </it>schistosomicidal activity against <it>S.haematobium</it>.</p> <p>Conclusions</p> <p>This study highlights miltefosine not only as a potential promising lead compound for the synthesis of novel broad spectrum schistosomicidal derivatives, but also for molluscicidals.</p

    Regulation of Hemocytes in Drosophila Requires dappled Cytochrome b5

    Get PDF
    A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    corecore