4,908 research outputs found

    ALMA CO J=6-5 observations of IRAS16293-2422: Shocks and entrainment

    Full text link
    Observations of higher-excited transitions of abundant molecules such as CO are important for determining where energy in the form of shocks is fed back into the parental envelope of forming stars. The nearby prototypical and protobinary low-mass hot core, IRAS16293-2422 (I16293) is ideal for such a study. The source was targeted with ALMA for science verification purposes in band 9, which includes CO J=6-5 (E_up/k_B ~ 116 K), at an unprecedented spatial resolution (~0.2", 25 AU). I16293 itself is composed of two sources, A and B, with a projected distance of 5". CO J=6-5 emission is detected throughout the region, particularly in small, arcsecond-sized hotspots, where the outflow interacts with the envelope. The observations only recover a fraction of the emission in the line wings when compared to data from single-dish telescopes, with a higher fraction of emission recovered at higher velocities. The very high angular resolution of these new data reveal that a bow shock from source A coincides, in the plane of the sky, with the position of source B. Source B, on the other hand, does not show current outflow activity. In this region, outflow entrainment takes place over large spatial scales, >~ 100 AU, and in small discrete knots. This unique dataset shows that the combination of a high-temperature tracer (e.g., CO J=6-5) and very high angular resolution observations is crucial for interpreting the structure of the warm inner environment of low-mass protostars.Comment: Accepted for publication in A&A Letter

    CPT Violation Implies Violation of Lorentz Invariance

    Get PDF
    An interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.Comment: Minor changes in the published versio

    Quantum Interaction ϕ44\phi^4_4: the Construction of Quantum Field defined as a Bilinear Form

    Full text link
    We construct the solution ϕ(t,x)\phi(t,{\bf x}) of the quantum wave equation ϕ+m2ϕ+λ: ⁣ ⁣ϕ3 ⁣ ⁣:=0\Box\phi + m^2\phi + \lambda:\!\!\phi^3\!\!: = 0 as a bilinear form which can be expanded over Wick polynomials of the free inin-field, and where : ⁣ϕ3(t,x) ⁣::\!\phi^3(t,{\bf x})\!: is defined as the normal ordered product with respect to the free inin-field. The constructed solution is correctly defined as a bilinear form on Dθ×DθD_{\theta}\times D_{\theta}, where DθD_{\theta} is a dense linear subspace in the Fock space of the free inin-field. On Dθ×DθD_{\theta}\times D_{\theta} the diagonal Wick symbol of this bilinear form satisfies the nonlinear classical wave equation.Comment: 32 pages, LaTe

    The first metazoa living in permanently anoxic conditions

    Get PDF
    Background: Several unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity.Results: During the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera (Spinoloricus nov. sp., Rugiloricus nov. sp. and Pliciloricus nov. sp.) new to science. Using radioactive tracers, biochemical analyses, quantitative X-ray microanalysis and infrared spectroscopy, scanning and transmission electron microscopy observations on ultra-sections, we provide evidence that these organisms are metabolically active and show specific adaptations to the extreme conditions of the deep basin, such as the lack of mitochondria, and a large number of hydrogenosome-like organelles, associated with endosymbiotic prokaryotes.Conclusions: This is the first evidence of a metazoan life cycle that is spent entirely in permanently anoxic sediments. Our findings allow us also to conclude that these metazoans live under anoxic conditions through an obligate anaerobic metabolism that is similar to that demonstrated so far only for unicellular eukaryotes. The discovery of these life forms opens new perspectives for the study of metazoan life in habitats lacking molecular oxygen

    Water distribution in shocked regions of the NGC1333-IRAS4A protostellar outflow

    Get PDF
    We present the study of the H2O spatial distribution at two bright shocked regions along IRAS4A, one of the strongest H2O emitters among the Class 0 outflows. We obtained Herschel-PACS maps of the IRAS4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38 arcsec at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. We detect four H2O lines and CO (16-15) at the two selected positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the excitation analysis of the H2O emission suggests that the compact (about 3 arcsec) component is associated with a hot (T~1000 K) gas with densities ~(1-4)x10^5 cm^{-3}, whereas the extended one (10-17 arcsec) traces a warm (T~300-500 K) and dense gas (~(3-5)x10^7 cm^{-3}). Finally, using the CO (16-15) emission observed at R2, we estimate the H2O/H2 abundance of the warm and hot components to be (7-10)x10^{-7} and (3-7)x10^{-5}. Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow.Comment: 13 pages, 11 figures. Accepted for publication in Astronomy and Astrophysic

    Perturbative Hamiltonian constraints for higher order theories

    Full text link
    We present a method for constructing a consistent low energy canonical formalism for higher order time-derivative theories, extending the Dirac method to include perturbative Hamiltonian constraints. We apply it to two paradigmatic examples: the Pais-Uhlenbeck oscillator and the Bernard-Duncan scalar field. We also compare the results, both at the classical and quantum level, with the ones corresponding to a direct perturbative construction applied to the exact higher order theory. This comparison highligths the soundness of the present formalism.Comment: 26 pages, 4 figures; review section shortened and appendices change

    Observation of Quantum Asymmetry in an Aharonov-Bohm Ring

    Full text link
    We have investigated the Aharonov-Bohm effect in a one-dimensional GaAs/GaAlAs ring at low magnetic fields. The oscillatory magnetoconductance of these systems are for the first time systematically studied as a function of density. We observe phase-shifts of π\pi in the magnetoconductance oscillations, and halving of the fundamental h/eh/e period, as the density is varied. Theoretically we find agreement with the experiment, by introducing an asymmetry between the two arms of the ring.Comment: 4 pages RevTex including 3 figures, submitted to Phys. Rev.

    Rigged Hilbert Space Approach to the Schrodinger Equation

    Full text link
    It is shown that the natural framework for the solutions of any Schrodinger equation whose spectrum has a continuous part is the Rigged Hilbert Space rather than just the Hilbert space. The difficulties of using only the Hilbert space to handle unbounded Schrodinger Hamiltonians whose spectrum has a continuous part are disclosed. Those difficulties are overcome by using an appropriate Rigged Hilbert Space (RHS). The RHS is able to associate an eigenket to each energy in the spectrum of the Hamiltonian, regardless of whether the energy belongs to the discrete or to the continuous part of the spectrum. The collection of eigenkets corresponding to both discrete and continuous spectra forms a basis system that can be used to expand any physical wave function. Thus the RHS treats discrete energies (discrete spectrum) and scattering energies (continuous spectrum) on the same footing.Comment: 27 RevTex page
    corecore