3,634 research outputs found
Electronic and phononic properties of the chalcopyrite CuGaS2
The availability of ab initio electronic calculations and the concomitant
techniques for deriving the corresponding lattice dynamics have been profusely
used for calculating thermodynamic and vibrational properties of
semiconductors, as well as their dependence on isotopic masses. The latter have
been compared with experimental data for elemental and binary semiconductors
with different isotopic compositions. Here we present theoretical and
experimental data for several vibronic and thermodynamic properties of CuGa2, a
canonical ternary semiconductor of the chalcopyrite family. Among these
properties are the lattice parameters, the phonon dispersion relations and
densities of states (projected on the Cu, Ga, and S constituents), the specific
heat and the volume thermal expansion coefficient. The calculations were
performed with the ABINIT and VASP codes within the LDA approximation for
exchange and correlation and the results are compared with data obtained on
samples with the natural isotope composition for Cu, Ga and S, as well as for
isotope enriched samples.Comment: 9 pages, 8 Figures, submitted to Phys. Rev
Освітнє законодавство. Основні законодавчі акти
Наведено основні законодавчі акти з регулювання освітніх відносин,
зокрема, у сфері вищої, загальної середньої, професійно-технічної,
позашкільної освіти тощо.
Розраховано на студентів, які здобувають повну вищу освіту за
спеціальностями "Правознавство", "Педагогіка вищої школи", науково-
педагогічних і педагогічних працівників
Self-similar chain conformations in polymer gels
We use molecular dynamics simulations to study the swelling of randomly
end-cross-linked polymer networks in good solvent conditions. We find that the
equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand
lengths N_s exceeding the melt entanglement length N_e. The internal structure
of the network strands in the swollen state is characterized by a new exponent
nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which
predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory
argument for a self-similar structure of mutually interpenetrating network
strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner
theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand
length.Comment: 4 pages, RevTex, 3 Figure
Short Time Behavior in De Gennes' Reptation Model
To establish a standard for the distinction of reptation from other modes of
polymer diffusion, we analytically and numerically study the displacement of
the central bead of a chain diffusing through an ordered obstacle array for
times . Our theory and simulations agree quantitatively and show
that the second moment approaches the often viewed as signature of
reptation only after a very long transient and only for long chains (N > 100).
Our analytically solvable model furthermore predicts a very short transient for
the fourth moment. This is verified by computer experiment.Comment: 4 pages, revtex, 4 ps file
Structure of Polyelectrolytes in Poor Solvent
We present simulations on charged polymers in poor solvent. First we
investigate in detail the dilute concentration range with and without imposed
extension constraints. The resulting necklace polymer conformations are
analyzed in detail. We find strong fluctuations in the number of pearls and
their sizes leading only to small signatures in the form factor and the
force-extension relation. The scaling of the peak in the structure factor with
the monomer density shows a pertinent different behavior from good solvent
chains.Comment: 7 pages, 5 figures. submitted to EP
Evolution of dopant-induced helium nanoplasmas
Two-component nanoplasmas generated by strong-field ionization of doped
helium nanodroplets are studied in a pump-probe experiment using few-cycle
laser pulses in combination with molecular dynamics simulations. High yields of
helium ions and a pronounced, droplet size-dependent resonance structure in the
pump-probe transients reveal the evolution of the dopant-induced helium
nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner
ionization by the pump pulse and resonant heating by the probe pulse which
controls the final charge states detected via the frustration of electron-ion
recombination
- …