821 research outputs found

    iRefR: an R package to manipulate the iRefIndex consolidated protein interaction database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The iRefIndex addresses the need to consolidate protein interaction data into a single uniform data resource. iRefR provides the user with access to this data source from an R environment.</p> <p>Results</p> <p>The iRefR package includes tools for selecting specific subsets of interest from the iRefIndex by criteria such as organism, source database, experimental method, protein accessions and publication identifier. Data may be converted between three representations (MITAB, edgeList and graph) for use with other R packages such as igraph, graph and RBGL.</p> <p>The user may choose between different methods for resolving redundancies in interaction data and how n-ary data is represented. In addition, we describe a function to identify binary interaction records that possibly represent protein complexes. We show that the user choice of data selection, redundancy resolution and n-ary data representation all have an impact on graphical analysis.</p> <p>Conclusions</p> <p>The package allows the user to control how these issues are dealt with and communicate them via an R-script written using the iRefR package - this will facilitate communication of methods, reproducibility of network analyses and further modification and comparison of methods by researchers.</p

    Regulation of Retinoid Receptors by Retinoic Acid and Axonal Contact in Schwann Cells

    Get PDF
    Background: Schwann cells (SCs) are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS). As retinoic acid (RA) and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. Methodology/Principal Findings: In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-c depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-c mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-b mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. Conclusions/Significance: All together, our results show that retinoid receptors are regulated in a complex manner i

    HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores

    Get PDF
    Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in several expert curated databases. These databases are used by researchers interested in examining detailed information on particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple experimental PPI datasets. HIPPIE's scoring scheme has been optimized by human experts and a computer algorithm to reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified confidence level

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Candidate gene prioritization by network analysis of differential expression using machine learning approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals.</p> <p>To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network.</p> <p>Results</p> <p>We have proposed three strategies scoring disease candidate genes relying on network-based machine learning approaches, such as kernel ridge regression, heat kernel, and Arnoldi kernel approximation. For comparison purposes, a local measure based on the expression of the direct neighbors is also computed. We have benchmarked these strategies on 40 publicly available knockout experiments in mice, and performance was assessed against results obtained using a standard procedure in genetics that ranks candidate genes based solely on their differential expression levels (<it>Simple Expression Ranking</it>). Our results showed that our four strategies could outperform this standard procedure and that the best results were obtained using the <it>Heat Kernel Diffusion Ranking </it>leading to an average ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction of 52.8% relative to the standard procedure approach which ranked the knockout gene on average at position 17 with an AUC value of 83.7%.</p> <p>Conclusion</p> <p>In this study we could identify promising candidate genes using network based machine learning approaches even if no knowledge is available about the disease or phenotype.</p

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Big Losses Lead to Irrational Decision-Making in Gambling Situations: Relationship between Deliberation and Impulsivity

    Get PDF
    In gambling situations, we found a paradoxical reinforcing effect of high-risk decision-making after repeated big monetary losses. The computerized version of the Iowa Gambling Task (Bechara et al., 2000), which contained six big loss cards in deck B', was conducted on normal healthy college students. The results indicated that the total number of selections from deck A' and deck B' decreased across trials. However, there was no decrease in selections from deck B'. Detailed analysis of the card selections revealed that some people persisted in selecting from the “risky” deck B' as the number of big losses increased. This tendency was prominent in self-rated deliberative people. However, they were implicitly impulsive, as revealed by the matching familiar figure test. These results suggest that the gap between explicit deliberation and implicit impulsivity drew them into pathological gambling
    • 

    corecore