38 research outputs found

    Sub-Telomeric core X and Y' Elements in S.cerevisiae Suppress Extreme Variations in Gene Silencing

    Get PDF
    Telomere Position Effect (TPE) is governed by strong repression signals emitted by telomeres via the Sir2/3/4 Histone Deacetylase complex. These signals are then relayed by weak proto-silencers residing in the subtelomeric core X and Y' elements. Subtelomeres also contain Sub-Telomeric Anti-silencing Regions (STARs). In this study we have prepared telomeres built of different combinations of core X, Y' and STARs and have analyzed them in strains lacking Histone-Acetyltransferase genes as well as in cdc6-1 and Δrif1 strains. We show that core X and Y' dramatically reduce both positive and negative variations in TPE, that are caused by these mutations. We also show that the deletion of Histone-Acetyltransferase genes reduce the silencing activity of an ACS proto-silencer, but also reduce the anti-silencing activity of a STAR. We postulate that core X and Y' act as epigenetic “cushioning” cis-elements

    The Impact of Local Genome Sequence on Defining Heterochromatin Domains

    Get PDF
    Characterizing how genomic sequence interacts with trans-acting regulatory factors to implement a program of gene expression in eukaryotic organisms is critical to understanding genome function. One means by which patterns of gene expression are achieved is through the differential packaging of DNA into distinct types of chromatin. While chromatin state exerts a major influence on gene expression, the extent to which cis-acting DNA sequences contribute to the specification of chromatin state remains incompletely understood. To address this, we have used a fission yeast sequence element (L5), known to be sufficient to nucleate heterochromatin, to establish de novo heterochromatin domains in the Schizosaccharomyces pombe genome. The resulting heterochromatin domains were queried for the presence of H3K9 di-methylation and Swi6p, both hallmarks of heterochromatin, and for levels of gene expression. We describe a major effect of genomic sequences in determining the size and extent of such de novo heterochromatin domains. Heterochromatin spreading is antagonized by the presence of genes, in a manner that can occur independent of strength of transcription. Increasing the dosage of Swi6p results in increased heterochromatin proximal to the L5 element, but does not result in an expansion of the heterochromatin domain, suggesting that in this context genomic effects are dominant over trans effects. Finally, we show that the ratio of Swi6p to H3K9 di-methylation is sequence-dependent and correlates with the extent of gene repression. Taken together, these data demonstrate that the sequence content of a genomic region plays a significant role in shaping its response to encroaching heterochromatin and suggest a role of DNA sequence in specifying chromatin state

    Telomeric localization of TRF2, a novel human telobox protein

    No full text
    Natural chromosomal ends are stabilized by proteins that bind duplex telomeric DNA repeats. In human cells, the TTAGGG Repeat Factor 1 (TRF1) was identified by two independent studies, one screening for factors that bind duplex telomeric DNA and the other screening for proteins containing a particular Myb motif called the telobox, which is required for telomeric repeat recognition (Fig. 1a; refs 3-5). A second human open reading frame, orf2, contains a telobox sequence and encodes a polypeptide that specifically recognizes mammalian telomeric repeat DNA in vitro. We show that two proteins of 65 and 69 kD, expressed in HeLa cells, contain the orf2 telobox sequence. These proteins are collectively termed TRF2. Affinity-purified antibodies specific for anti-TRF2 label the telomeres of intact human chromosomes, strengthening the correlation between occurrence of telobox and telomere-repeat recognition in vivo

    The Telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human

    No full text
    The yeast TTAGGG binding factor 1 (Tbf1) was identified and cloned through its ability to interact with vertebrate telomeric repeats in vitro. We show here that a sequence of 60 amino acids located in its C-terminus is critical for DNA binding. This sequence exhibits homologies with Myb repeats and is conserved among five proteins from plants, two of which are known to bind telomeric-related sequences, and two proteins from human, including the telomeric repeat binding factor (TRF) and the predicted C-terminal polypeptide, called orf2, from a yet unknown protein. We demonstrate that the 111 C-terminal residues of TRF and the 64 orf2 residues are able to bind the human telomeric repeats specifically. We propose to call the particular Myb-related motif found in these proteins the 'telobox'. Antibodies directed against the Tbf1 telobox detect two proteins in nuclear and mitotic chromosome extracts from human cell lines. Moreover, both proteins bind specifically to telomeric repeats in vitro. TRF is likely to correspond to one of them. Based on their high affinity for the telomeric repeat, we predict that TRF and orf2 play an important role at human telomeres

    HBx triggers either cellular senescence or cell proliferation depending on cellular phenotype

    No full text
    International audienceReplicative senescence is a hallmark of chronic liver diseases including chronic hepatitis B virus (HBV) infection, whereas HBV-encoded oncoproteins HBx and preS2 have been found to overcome senescence. HBx possesses a C-terminal truncation mainly in hepatocellular carcinomas but also in noncancerous liver tissues. Here, by cell counting, BrdU incorporation, MTT proliferation assay, cell cycle analysis, SA-betagal staining and Western blotting in primary and malignant cells, we investigated the effect of HBx C-terminal mutants on cellular senescence. HBx C-terminal mutants were found to trigger cellular senescence in primary MRC5 cells, and malignant liver cells Huh7, and SK-Hep1. In contrast, these mutants promoted the proliferation of HepG2 malignant liver cells. The pro-senescent effect of HBx relied on an increased p16(INK4a) and p21(Waf1/Cip1) expression, and a decreased phosphorylation of Rb. Together, these results suggest that the two main variants of HBx present in HBV-infected liver possess opposite effects on cellular senescence that depend on the phenotype of infected cell
    corecore