20 research outputs found

    Neoplastic transformation of breast epithelial cells by genotoxic stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to genotoxic stresses such as radiation and tobacco smoke can cause increased cancer incidence rate as reflected in an in depth meta-analysis of data for women and breast cancer incidence. Published reports have indicated that exposures to low dose radiation and tobacco smoke are factors that contribute to the development of breast cancer. However, there is a scarcity of information on the combinatorial effects of low dose radiation and tobacco smoke on formation and progression of breast cancer. The combination of these two genotoxic insults can induce significant damage to the genetic material of the cells resulting in neoplastic transformation.</p> <p>Methods</p> <p>To study the effects of low dose ionizing radiation and tobacco smoke on breast cells, MCF 10A cells were treated either with radiation (Rad - 0.1 Gray) or cigarette smoke condensate (Csc - 10 microgram/ml of medium) or a combination of Rad + Csc. Following treatments, cells were analyzed for cell cycle distribution patterns and the ability to extrude the Hoechst 33342 dye. In addition, <it>in vitro </it>invasion and migration as well as mammosphere formation assays were performed. Finally, differential gene expression profiles were generated from the individual and combination treatment.</p> <p>Results</p> <p>Exposure of MCF 10A cells to the combination of radiation plus cigarette smoke condensate generated a neoplastic phenotype. The transformed phenotype promoted increased mammosphere numbers, altered cell cycle phases with a doubling of the population in S phase, and increased invasion and motility. Also, exclusion of Hoechst 33342 dye, a surrogate marker for increased ABC transporters, was observed, which indicates a possible increase in drug resistance. In addition, changes in gene expression include the up regulation of genes encoding proteins involved in metabolic pathways and inflammation.</p> <p>Conclusions</p> <p>The results indicate that when normal breast cells are exposed to low dose radiation in combination with cigarette smoke condensate a phenotype is generated that exhibits traits indicative of neoplastic transformation. More importantly, this is the first study to provide a new insight into a possible etiology for breast cancer formation in individuals exposed to low dose radiation and tobacco smoke.</p

    Artificial reporter gene providing MRI contrast based on proton exchange.

    No full text
    Item does not contain fulltextExisting magnetic resonance reporter genes all rely on the presence of (super)paramagnetic substances and employ water relaxation to gain contrast. We designed a nonmetallic, biodegradable, lysine rich-protein (LRP) reporter, the prototype of a potential family of genetically engineered reporters expressing artificial proteins with frequency-selective contrast. This endogenous contrast, based on transfer of radiofrequency labeling from the reporter's amide protons to water protons, can be switched on and off

    Periprosthetic Fractures of the Femur After Hip Arthroplasty: An Analysis of 99 Patients

    No full text
    The medical records and radiographs of 99 patients treated for a periprosthetic femur fracture after total hip arthroplasty over a 17-year period at a single institution were prospectively reviewed. Fractures were classified according to the Vancouver system and stratified as to treatment method. Sixty-six patients had complete records available and a minimum of 12 months follow-up. Overall, 86% of the patients achieved fracture union. The success rate of cemented revision in the B2 and B3 groups was 84%, whereas cement-less revision was 86% successful. The complication rate of surgical treatment was 29%. Fracture union with a stable implant was possible in the majority of cases. Our results support the use of the Vancouver classification as a treatment algorithm
    corecore