4,501 research outputs found
A model for the submarine depthkeeping team
The most difficult task the depthkeeping team must face occurs during periscope-depth operations during which they may be required to maintain a submarine several hundred feet long within a foot of ordered depth and within one-half degree of ordered pitch. The difficulty is compounded by the facts that wave generated forces are extremely high, depth and pitch signals are very noisy and submarine speed is such that overall dynamics are slow. A mathematical simulation of the depthkeeping team based on the optimal control models is described. A solution of the optimal team control problem with an output control restriction (limited display to each controller) is presented
Revisiting the theoretical DBV (V777 Her) instability strip: the MLT theory of convection
We reexamine the theoretical instability domain of pulsating DB white dwarfs
(DBV or V777 Her variables). We performed an extensive -mode nonadiabatic
pulsation analysis of DB evolutionary models considering a wide range of
stellar masses, for which the complete evolutionary stages of their progenitors
from the ZAMS, through the thermally pulsing AGB and born-again phases, the
domain of the PG1159 stars, the hot phase of DO white dwarfs, and then the DB
white dwarf stage have been considered. We explicitly account for the evolution
of the chemical abundance distribution due to time-dependent chemical diffusion
processes. We examine the impact of the different prescriptions of the MLT
theory of convection and the effects of small amounts of H in the almost
He-pure atmospheres of DB stars on the precise location of the theoretical blue
edge of the DBV instability strip.Comment: Proceedings, 16th European White Dwarf Workshop, Barcelona, 200
Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey
We present the identification of 13 DB + dM binaries and 2 DC + dM binaries
from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM
binaries and 1 DC + dM binary were known. At least three, possibly 8, of the
new DB + dM binaries seem to have white dwarf temperatures well above 30000 K
which would place them in the so called DB-gap. Finding these DB white dwarfs
in binaries may suggest that they have formed through a different evolutionary
channel than the ones in which DA white dwarfs transform into DB white dwarfs
due to convection in the upper layers.Comment: 4 pages, 2 figures, accepted for publication in A&A Letter
Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation
It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/&Delta;CO ratio for the ROB case increases from 20–30 μg sm<sup>&minus;3</sup> ppm<sup>&minus;1</sup> up to 60–70 μg sm<sup>&minus;3</sup> ppm<sup>&minus;1</sup> between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (<i>R</i><sup>2</sup>=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio
The social security rights of older international migrants in the European Union
Europe is now home to a significant and diverse population of older international migrants. Social and demographic changes have forced the issue of social security in old age onto the European social policy agenda in the last decade. In spite of an increased interest in the financial well-being of older people, many retired international migrants who are legally resident in the European Union face structured disadvantages. Four linked factors are of particular importance in shaping the pension rights and levels of financial provision available to individual older migrants: migration history, socio-legal status, past relationship to the paid labour market, and location within a particular EU Member State. Building on a typology of older migrants, the paper outlines the ways in which policy at both the European Union and Member State levels serves to diminish rather than enhance the social security rights of certain older international migrants
Order reduction approaches for the algebraic Riccati equation and the LQR problem
We explore order reduction techniques for solving the algebraic Riccati
equation (ARE), and investigating the numerical solution of the
linear-quadratic regulator problem (LQR). A classical approach is to build a
surrogate low dimensional model of the dynamical system, for instance by means
of balanced truncation, and then solve the corresponding ARE. Alternatively,
iterative methods can be used to directly solve the ARE and use its approximate
solution to estimate quantities associated with the LQR. We propose a class of
Petrov-Galerkin strategies that simultaneously reduce the dynamical system
while approximately solving the ARE by projection. This methodology
significantly generalizes a recently developed Galerkin method by using a pair
of projection spaces, as it is often done in model order reduction of dynamical
systems. Numerical experiments illustrate the advantages of the new class of
methods over classical approaches when dealing with large matrices
Rethinking professional practice: the logic of competition and the crisis of identity in housing practice
The relationship between professionalism, education and housing practice has become increasingly strained following the introduction of austerity measures and welfare reforms across a range of countries. Focusing on the development of UK housing practice, this article considers how notions of professionalism are being reshaped within the context of welfare retrenchment and how emerging tensions have both affected the identity of housing professionals and impacted on the delivery of training and education programmes. The article analyses the changing knowledge and skills valued in contemporary housing practice and considers how the sector has responded to the challenges of austerity. The central argument is that a dominant logic of competition has culminated in a crisis of identity for the sector. Although the focus of the article is on UK housing practice, the processes identified have a wider relevance for the analysis of housing and welfare delivery in developed economies
Magnons in real materials from density-functional theory
We present an implementation of the adiabatic spin-wave dynamics of Niu and
Kleinman. This technique allows to decouple the spin and charge excitations of
a many-electron system using a generalization of the adiabatic approximation.
The only input for the spin-wave equations of motion are the energies and Berry
curvatures of many-electron states describing frozen spin spirals. The latter
are computed using a newly developed technique based on constrained
density-functional theory, within the local spin density approximation and the
pseudo-potential plane-wave method. Calculations for iron show an excellent
agreement with experiments.Comment: 1 LaTeX file and 1 postscript figur
- …