53 research outputs found

    Dietary patterns associated with fall-related fracture in elderly Japanese: a population based prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diet is considered an important factor for bone health, but is composed of a wide variety of foods containing complex combinations of nutrients. Therefore we investigated the relationship between dietary patterns and fall-related fractures in the elderly.</p> <p>Methods</p> <p>We designed a population-based prospective survey of 1178 elderly people in Japan in 2002. Dietary intake was assessed with a 75-item food frequency questionnaire (FFQ), from which dietary patterns were created by factor analysis from 27 food groups. The frequency of fall-related fracture was investigated based on insurance claim records from 2002 until 2006. The relationship between the incidence of fall-related fracture and modifiable factors, including dietary patterns, were examined. The Cox proportional hazards regression model was used to examine the relationships between dietary patterns and incidence of fall-related fracture with adjustment for age, gender, Body Mass Index (BMI) and energy intake.</p> <p>Results</p> <p>Among 877 participants who agreed to a 4 year follow-up, 28 suffered from a fall-related fracture. Three dietary patterns were identified: mainly vegetable, mainly meat and mainly traditional Japanese. The moderately confirmed (see statistical methods) groups with a Meat pattern showed a reduced risk of fall-related fracture (Hazard ratio = 0.36, 95% CI = 0.13 - 0.94) after adjustment for age, gender, BMI and energy intake. The Vegetable pattern showed a significant risk increase (Hazard ratio = 2.67, 95% CI = 1.03 - 6.90) after adjustment for age, gender and BMI. The Traditional Japanese pattern had no relationship to the risk of fall-related fracture.</p> <p>Conclusions</p> <p>The results of this study have the potential to reduce fall-related fracture risk in elderly Japanese. The results should be interpreted in light of the overall low meat intake of the Japanese population.</p

    Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes

    Get PDF
    BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern

    Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes.

    Get PDF
    BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern

    Author Correction: Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes.

    Get PDF
    This is the final version. Available from BMC via the DOI in this record. Following publication of the original article, the authors identified an error in the author name of Zhanna Balkhiyarova. The incorrect author name is: Zhanna Balkiyarova The correct author name is: Zhanna Balkhiyarova The author group has been updated above and the original article has been corrected.Wellcome Trus

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites
    • …
    corecore